纳米银粉与微米银粉的区别,纳米银粉与微米银粉的区别在哪(金属粉末行业深度报告)
关于【纳米银粉与微米银粉的区别】,纳米银粉与微米银粉的区别在哪,今天乾乾小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
- 内容导航:
- 1、金属粉末行业深度报告:高端材料,千亿市场
- 2、纳米银粉与微米银粉的区别
1、金属粉末行业深度报告:高端材料,千亿市场
(报告出品方/作者:信达证券,娄永刚、黄礼恒)
金属粉末:高端材料,千亿市场
金属粉末是实现非标冶金产品规模化生产的基础
金属粉末是指尺寸小于 1mm 的金属颗粒群,包括单一金属粉末、合金粉末以及具有金 属性质的某些难熔化合物粉末,是粉末冶金的主要原材料。粉末冶金是以金属粉末(或 金属粉末与非金属粉末的混合物)为原料,经成形和烧结过程制造金属材料、复合材料 以及多种不同类型制品的工艺方法。因此,金属粉末是伴随着粉末冶金技术发展起来的, 金属粉末的应用领域拓展离不开粉末冶金技术的不断革新。 粉末冶金技术所带来的重要变革主要体现在两个方面:(1)开发新型材料和关键制品的 先进技术。1909 年开发出的粉末冶金延性钨丝,为人类社会带来了光明。1923 年硬质 合金的问世,将金属切削加工效率提高几十倍甚至上百倍,为切削加工、采掘钻探以及 其它加工业带来革命性变革。20 世纪 30 年代以来,基于粉末冶金技术开发的难熔金属、 电触头材料和磁性材料(包括稀土永磁材料),为电气化系统和通讯设备提供关键器材和 元件。(2)生产高性能金属机械零件的先进成形工艺。由于粉末冶金技术能实现材料的 近净成型,具有原材料利用率高(约 95%)、生产效率高、节能环保的优势,能够直接生 产形状复杂高精度的高性能粉末冶金产品。世界范围内的粉末冶金机械零件产业发展迅 速,确立其作为现代制造业的重要组成地位。
当前,以新一代信息技术、新能源、智能制造等为代表的新兴产业快速发展,对材料提 出了更高要求,如超高纯度、超高性能、超低缺陷、高速迭代、多功能、高耐用、低成 本、易回收、设备精良等,对新材料的研发提出更高要求。新材料产业向绿色化、低碳 化、精细化、节约化方向发展。物联网、人工智能、云计算等新一代信息技术和互联网 技术的飞速发展,以及新型感知技术和自动化技术的应用,推动新材料产业研发进程不 断加快,为金属粉末带来了前所未有的发展机遇。 金属粉末广泛应用于汽车、航空航天、电子、机械和建筑等领域,在产业升级和绿色制 造的大时代背景下,各领域对高精度和轻量化组件的需求正在快速增长。汽车和航空航 天行业在提高对轻量化零部件的需求方面走在前列,为消费者提供节能解决方案。传统 的生产方法无法生产这种轻量化且高精度的部件,但先进的粉末冶金工艺,如金属粉末 注射成型(MIM)、金属粉末增材制造(3D 打印)等工艺能以相对较低的生产成本高效 地生产此类非标组件。
粉末冶金技术的不断提升,推动粉末冶金产品的应用领域不断向高端市场拓展。新能源 汽车、光伏、风电、储能、航空航天、通信、医疗等新兴领域快速发展,又对高性能、 低成本的定制化、个性化的新材料及部件需求大幅提升。而粉末冶金技术的进步可以助 力低端同质化产品的规模化生产向高端定制化产品规模化生产升级。所谓的规模化生产 不仅是产能规模的扩大,而是生产效率的提升,进而节约能源并降低成本。金属粉末是 实现非标冶金产品规模化生产的基础。
金属粉末剑指千亿市场
据 PMR 公司(Persistence Market Research),尽管遭遇了 2019 新冠疫情,金属粉末全 球销售在 2017-2021 年期间依然维持 3.4%的复合增长率,2021 年金属粉末全球市场规 模达到 89 亿美元。由于新能源汽车、光伏、储能、航空航天等领域更喜欢先进的制造 工艺,以减少时间、成本和劳动力,同时提高生产效率,金属粉末的需求预计将在 2022-2032 年经历更高的增长,预计全球市场规模将从 2022 年的 95 亿美元增至 2032 年的 193 亿美元,年均复合增长率(CAGR)为 7.4%。 美国是金属粉末最大的消费国,其次是中国。PMR 预计 2022 年美国的市场规模将达到 27亿美元,北美市场占比达 30.9%。各种技术进步和尖端制造技术的迅速采用将促进美 国金属粉末需求快速增长。由于对高精度、耐用性和高强度组件的需求,PMR 预计 3D 打印将在医疗保健和国防部门经历高速增长。中国是世界第二大经济体,同时是全球制 造业大国,金属粉末在电子、汽车、航空航天、新能源、医疗等领域应用空间广阔,叠 加产业升级和进口替代,中国的金属粉末市场规模有望进入加速扩张阶段。
金属粉末包括铝粉、铜粉、铁粉、镍粉、钛粉、钨粉、钼粉等,其中铁粉占比最大, PMR 认为未来 10 年铝粉的需求增长最快,预计到 2032 年,铝粉将以 10%的复合增速 增长,主要原因是汽车和航空航天等行业为了为客户提供节能的解决方案,对轻量化和 高精度组件的需求不断增长,推动了对铝金属粉末的需求。我们认为随着工艺进步及成 本下降,钛粉的需求也将迎来高速增长,相比铝粉,钛粉性能更优,但成本较高。 从粉末冶金工艺来看,增材制造(3D 打印)将是未来市场潜力最大、增速最高的工艺 技术。据 BCC Research,全球增材制造粉末冶金市场规模 2022 年预计为 4.119 亿美 元,到 2027 年达到 11 亿美元以上,复合年增长率(CAGR)为 22.6%。其中北美地区 2022-2027 年从 1.562 亿美元增长至 3.434 亿美元(CAGR 17.1%),亚太地区 2022- 2027 年从 1.091 亿美元增长至 3.71 亿美元(CAGR 27.7%)。
据铂力特 2021 年报,2021 年全球增材制造市场规模达到 152.44 亿美元,相比 2020 年 增长 19.5%,过去 4 年(2018-2021)平均增长率为 20.4%。其中 3D 打印服务占比 41%,打印材料占比 23.4%,打印装备占比 22.4%,其他占比 13.2%。2021 年增材制 造材料产业规模达到 25.98 亿美元,较 2020 年增长 23.4%,占总产值的 17%。增材制 造专用材料被分为金属、光敏树脂、聚合物粉材、聚合物丝材等四类,其中金属原材料 业务占比 18.2%,光敏树脂占比 25.2%,聚合物丝材占比 19.9%,聚合物粉材占比 34.7%。从下游应用领域来看,航空航天占比 16.8%,消费类/电子产品占比 11.8%,政 府/军事占比 6%,医疗占比 15.6%,科研机构占比 11.1%,建筑 4.5%,汽车 14.6%, 能源 7%,其他 12.6%。未来,随着疫情逐渐平稳,增材制造产业仍将保持高速发展, 工业级增材制造应用场景将继续增加,消费级增材制造将趋于平稳。美国、欧洲等国将 持续对增材制造产业注能。3D 打印在包括航空航天、汽车和医疗在内的垂直领域的潜 力仍在增长。
金属粉末是最符合第一性原理的金属材料
主要通过粉末冶金工艺得以广泛应用
金属粉末是指尺寸小于 1mm 的金属颗粒群,是粉末冶金的主要原材料。小颗粒尺度界 于 1nm-1mm 范围,1nm 略等于 45 个原子排列的长度。金属粉末属于松散状物质,其 性能综合反映了金属本身的性质和单个颗粒的性状及颗粒群的特性。 金属粉末的性能一般可以分为化学性能、物理性能和工艺性能。 化学性能是指金属含量和杂质含量,金属含量越多,表明金属粉末纯度更高,其化 学性能也会更好; 物理性能包括粉末的平均粒度和粒度分布,颗粒的形状、表面形貌和内部显微结构, 金属粉末的粒度越细,其比表面积越大,制得的零部件具有烧结活性好、成型密度高、涡流损耗低的优势,将会提高零部件的机械性能,其在高频、大功率的电子、 电力工作场景中得到广泛应用; 工艺性能是一种综合性能,包括粉末的流动性、松装密度、成形性和烧结尺寸变化。 金属粉末的性能在很大程度上取决于粉末的生产方法及制取工艺。
其中电子专用高端金属粉末不同于传统金属粉末行业,为符合下游电子元器件产品小型 化、薄型化的要求,电子元器件用金属粉末粒径远小于传统的粉末冶金材料,其制造工 艺也有明显差异,生产成本也远非普通的粉末冶金材料可比。 按照组分分类,金属粉末可以分为单一金属粉末和合金粉末。单一金属粉末分为铁粉、 铜粉、铝粉、镍粉、钛粉、铅粉、锡粉、钴粉、铬粉、银粉等,被广泛应用于粉末冶金 结构零件、金刚石工具、磁性材料、摩擦材料电池等下游领域。合金粉末有铁基合金粉、 镍基合金粉、铜基合金粉等,以铁硅合金粉末为例,铁硅粉末具有球形度好、流动性高 的特征,相应制备的磁粉芯具有低功率损耗、高直流叠加特性和频率及温度稳定性,广 泛应用于电动汽车直流充电桩、太阳能光伏逆变器、大功率 APF有源滤波器和混合电抗 器中。 此外,金属粉末还可以按照生产工艺分为电解粉、还原粉、雾化粉、羰基粉、破碎粉等; 按照应用分为软磁粉末、高温合金粉末、3D 打印专用粉末、电子专用粉末等。
金属粉末常通过传统粉末冶金、注射成型、增材制造等工艺生成结构件或功能件,也可 直接应用于各行各业。随着粉末冶金技术的不断发展及下游应用领域的持续扩张,金属 粉末在不同领域的应用占比将持续增加,且终端应用不断拓展。伴随着注射成型、 3D 打印等新型技术逐步落地,并且在企业成本及环保双重压力下,粉末冶金工艺优势不断 显现,粉末冶金在航空航天、高端装备及医疗器械等终端应用领域市场广阔。
铁基粉末占比最大,其他粉末百花齐放
铁基粉末是金属粉末行业中最为重要的粉末品种,以铁基粉末为代表的金属粉末是一种 新型产业原材料,属于制造业重要原材料领域,对中国制造业实现高端突破,完成产业 转型具有重要的战略意义。铁基粉末是金属粉末行业中最为重要的粉末品种,铁基粉末 行业下游应用主要包括粉末冶金制品、 金刚石工具、磁性材料、热喷涂、冶金辅料及焊 材领域,终端应用包括交通工具、家用电器、电动工具、3C 电子及医疗器械等众多行 业。伴随金属粉末制备工艺的不断提升,金属粉末终端应用不断拓展。以下游粉末冶金 制品行业为例,伴随注射成型、 3D 打印等新型技术逐步落地,并且在企业成本及环保 双重压力下,粉末冶金工艺优势不断显现,粉末冶金在航空航天、高端装备及医疗器械 等终端应用领域市场广阔。 随着下游应用行业的快速发展以及金属粉末应用领域的不断拓展,金属粉末行业迎来了 快速发展期。根据中投产业研究院发布的《2022-2026 年中国金属粉末行业深度调研及 投资前景预测报告》,2016-2020 年,中国金属粉末销售量呈增长态势。2020 年,中国 金属粉末销售量为 73.61 万吨,其中钢铁粉末总销量为 67.9 万吨,占比 90%以上。 2013-2020年中国铜基金属粉末销量同样逐年增长,销量从4.21万吨增长至5.71万吨, CAGR 为 4.4%。
铁基粉末主要有雾化铁粉、还原铁粉、羰基铁粉、合金钢粉等。铁基粉体下游应用广泛, 按照使用方式的不同可以分为结构性材料与功能性材料两大类:结构性材料指将金属粉 体通过传统压烧或新型工艺(如注射成型、3D 打印技术)制成承受外力的结构零件, 而功能性材料指利用金属粉体特殊的物理/化学性能,形成功能元件的特殊物理/化学性 能。
国内铜基粉末材料多数应用于粉末冶金零部件、超硬工具、高铁动车组闸片等领域,随 着制备技术的逐步完善以及产品质量的进一步提高,铜基金属粉末材料已被广泛应用于 更丰富的领域。近年来,导热导电材料、高铁刹车片、化工催化剂、增材制造等应用领 域的发展促进了铜基粉末销量的增加,铜基粉末产业技术得到提升,自动化程度提高, 产品系列化逐步完善,满足了不同领域的要求。 根据中国钢协粉末冶金协会统计数据,2020 年中国铜及铜合金粉末总销量为 5.71 万吨, 总产能超 7 万吨。国内年产能超过 2000 吨的企业共有 9 家,市场集中度较高。随着下 游应用领域的不断扩张,铜基粉末市场仍有较大发展空间。
传统的金属粉末以铁基粉末和铜基粉末为主,但随着粉末冶金工艺的升级和新能源、航 空航天等领域需求的爆发,其他金属粉末近几年也快速发展,尤其是金属 3D 打印等技 术的崛起带动了包括钛粉、铝粉、镍粉、钴粉、锡粉、铬粉在内的其他金属粉末百花齐 放。 金属粉末 100 多年来主要被欧美日俄等发达国家的龙头企业垄断,中国企业普遍是 2000 年之后才开始在金属粉末领域布局和发力。近几年中国金属粉末企业快速崛起, 在多粉末多领域进行国产替代。
3D 打印金属粉末迈入加速成长期
增材制造(3D 打印)专用材料是增材制造行业重要的细分市场,材料的品类和品质在 很大程度上决定增材制造产品及服务的质量。近年来,Stratasys、3D Systems、EOS、 惠普等增材制造行业领军企业以及巴斯夫、杜邦等材料企业纷纷加大对增材制造材料领 域的业务布局,相关研发创新活动日趋活跃。 中国增材制造材料细分市场中,金属材料占整体的比重显著高于全球。2019 年中国增 材制造材料细分市场中,金属材料市场规模为 15.56 亿元,占比为 38%,显著高于全球 市场 18.2%的占比。
目前,增材制造技术最为主要的下游应用领域主要涵盖汽车制造、航空航天、生物医疗 等。伴随着上述领域技术和产品持续推陈出新与升级换代,研发周期不断缩短,制造工 艺难度不断提高,对复杂精密构件的制造也提出了更高的要求,要求具备高效、高性能 复杂精密构件的快速制造能力,以及大型复杂结构件的直接制造能力,传统制造技术难 以满足。增材制造技术能够实现高性能复杂结构零件的无模具、快速、全致密近净成形, 逐步成为应对上述领域技术挑战的最佳技术途径。此外,增材制造技术也可满足航空航 天、武器装备、汽车零部件轻量化、一体化、拓扑优化设计和加工要求,降低生产成本。 增材制造技术的应用广度和深度也在不断扩展和延伸。全球市场范围内,消费品/电子、 能源等行业中越来越多的企业纷纷将其作为技术转型方向,用于突破研发瓶颈或解决设 计难题,助力智能制造等新型制造模式。根据 WohlersAssociates,Inc.发布的数据, 2019 年全球增材制造最大的下游应用领域为汽车工业,占比 16.4%, 消费品/电子领域 应用占比为 15.4%, 航空航天领域应用占比为 14.7%,其后为医疗/牙科、学术机构、 能源、政府/军工、建筑等行业。
新型、高品质增材制造用金属粉体材料的市场需求将呈现快速增长态势。当前,中国正 处于经济结构转型升级的关键时期,新技术、新产业、新模式的涌现驱动制造业持续发 展。近年来增材制造在航空航天、武器装备、汽车制造,生物医疗等领域逐步成为复杂 结构件研制与生产的核心技术。但是,目前可应用于上述领域的增材制造用金属粉体材 料的种类和数量依然不足,产品品质和成本难以满足日益发展的制造需求。因此,新型、 高品质增材制造用金属粉体材料的市场需求将呈现快速增长态势。此外,部分新型、高 品质粉末材料如耐更高温度高温合金粉末、轻质高强铝合金、镁合金等仍然高度依赖进 口,甚至面临某些先进材料国家的技术封锁、禁运等。因此,加强新型、高品质增材制 造金属材料的自主研发和独立创新势在必行。 增材制造用金属粉末涉及材料种类较多,包括钛合金、铝合金、铜合金、高温合金、模 具钢、不锈钢、钴铬合金、难熔金属等。其中,2021 年钛合金的用量最大,应用占比 超过 50%;高强度、高韧性铝合金粉末逐步引起越来越多生产商的兴趣,应用占比约 20%, 未来市场潜力巨大;镍基、钴基、铁基等高温合金材料在增材制造中的批量应用 也将成为未来行业重点关注方向;铜合金正逐步成为研究和应用热点;模具钢和钴铬合 金在模具和齿科领域已经初具规模。 近年来,增材制造用金属粉末材料供应商的生产能力不断提高,市场上各种合金粉末的 出货量实现大幅度增长,对材料价值链产生了积极影响,促进规模经济效应提升,成本 降低,产品质量不断改进。国际市场,增材制造金属粉末材料供应商以欧美厂商为主, 如德国 EOS、德国 TLSTechNIk、AP&C、Arcam、瑞典 solvay、瑞典 Hoganas、 Concept Laser、 ExOne 等,2021 年总产能超过 10000 吨/年。国内市场,主要厂商包 括中航迈特、飞尔康、西安赛隆、成都优材、亚通焊材、宇光飞利、南通智源等,总产 能超过 2000 吨/年。其中,中航迈特公司销售高温合金和钛合金粉末超 100 吨,江苏威 拉里公司销售模具钢粉末超 100 吨。
粉末冶金是最先进的金属成形工艺
粉末冶金技术是将金属粉末制成复合材料以及各种类型制品的核心技术工艺,其将金属 粉末或者复合粉末作为原材料,经过成型和烧结等工艺加工成金属制品。作为一门新兴 的材料制备技术,粉末冶金技术能耗低,具备近净成型的优势,材料利用率高达 95%, 是最先进的金属成形工艺。这些特性使粉末冶金在汽车、电气、能源、航空航天、医疗、 国防、工业和消费市场中的应用占据重要地位。随着粉末冶金技术进阶,高精密复杂零 件的市场空间快速扩大,需求稳步提升。
百年发展历程,驻守高端市场
粉末冶金作为一种既古老又充满活力的先进材料制备和成形技术,起源于古代陶瓷制备 技术和炼铁技术,为人类社会的发展做出了重要贡献。据《粉末冶金原理》,18 世纪中 叶,粉末冶金制铂技术在欧洲的兴起,开启了古老粉末冶金技术的复兴时代。直至 1909 年,粉末冶金法延性钨的问世标志着近现代粉末冶金时代的来临。随着技术的发 展和产品需求的提高,20 世纪 70 年代粉末注射成型工艺出现,20 世纪 90 年代末金属 增材制造技术得以研究和发展,粉末冶金技术的飞速发展为整个工业界带来了巨大的变 革。100 多年来,粉末冶金技术蓬勃发展,各种重要新型材料和关键性制品不断涌现, 成为当今国民经济和科学技术不可或缺的重要工程技术之一。
粉末冶金凭借其工艺的先进性始终走在时代的最前沿,应用在新兴高端的领域。粉末冶 金最早的大规模应用主要集中在汽车领域,目前粉末冶金产业较大的市场仍然是汽车行 业。
为提高燃油效率,燃油车轻量化粉末冶金组件需求大幅度提升。汽车行业的发展始终立 足于提高燃油效率,而通过粉末冶金技术中的金属注射成型、金属增材制造、粉末锻造 和温压刺激等工艺生产出的轻量化组件、轻质材料,可以提高燃油效率。据 MPIF,燃 油车大约有 350 个粉末冶金组件应用,总计约 1000 个离散件。随着粉末冶金越来越被 视为机械加工或铸造零件的有效替代品,应用数量正在稳步上升。 随着汽车工业电动化、智能化的快速发展,单车零部件数量虽在减少,但磁性材料(永 磁和软磁)的需求大幅提升,有望进一步推动粉末冶金工艺的发展和市场的扩大。
冶金制品的需求日益增多,促进了粉末冶金技术的变革。金属注射成型,金属增材制造 等新技术出现,标志着粉末冶金技术迈向了一个新的时代。金属注射成型在制备几何形 状复杂、组织结构均匀、性能优异的零件上具备独特的优势,具备材料适应性广、自动 化程度高、批量化程度高等特点,在电子产品行业,医疗器械等行业都有着广泛的应用。 也正是由于这些行业旺盛的需求,批量化程度的生产才会备受推崇。 欧美日等发达国家和地区占据粉末冶金过往市场的主导地位。2016 年全球粉末冶金市 场总份额约达到 285 亿美元,根据欧洲粉末冶金协会测算,欧洲粉末冶金零件营业收入 约为 93.00 亿欧元(折合美元 109.20 亿美元),粉末冶金零件产量总计 24.80 万吨,市 场份额占比最大,达到 38%。尽管亚太地区对粉末冶金消费制品的市场需求更大,但由 于亚洲粉末冶金市场除日本外起步较晚,其市场份额仍较低。
粉末冶金材料始终处于高端新材料范畴
粉末冶金基本工序由四个步骤组成,包括原料粉末的制备,粉末成型(成坯块),坯块 烧结,后序处理。其中粉末成型的目的是为了得到一定形状和尺寸的压坯,使其具备一 定的密度和强度。坯块的烧结是关键工序,经过烧结可以使得成型后的坯块得到最终的 物理性能。后序处理根据产品需求不同因而采取不同的方式进行。
金属粉末制备方法众多,主要分为物理化学法和机械法。目前工业上生产金属粉末的方法很多,研究成果和专利众多,但目前就生产的实质过程分析,仍然主要分为机械法和 物理化学法。这两种方法既可以从金属的固态、液态和气态三种状态下直接细化获得, 又可以从其不同状态下的金属氧化物经过不同的电解、还原等获制取。难熔金属的碳化 物、氮化物、硼化物、硅化物一般可直接用化合或还原-化合方法制取。不同的制备方 法制取得到的金属粉末往往形状、结构、性能上有着较大差异,可以针对不同需求的冶 金零件加工。
根据 MPIF《2017 PM INDUSTRY ROADMAP》,粉末成型工艺可分为四类:传统工艺 或压制烧结工艺;金属注射成型(MIM);热或冷等静压(HIP/CIP);和金属增材制造 (AM)。随着行业发展,金属粉末、润滑剂、工具、温压、高吨位压机和烧结技术不断改 进,冶金零部件密度继续上升。自 2012 年以来最明显的进步是金属增材制造的迅速出 现,同时 MIM 也显著增长,因为它在材料选择、过程控制和标准化方面取得了进步, 这些材料和工艺的发展促成了新的粉末冶金应用,例如可变气门正时链轮、电子动力转 向皮带轮、涡轮增压器叶片和喷气发动机燃料喷嘴。
根据《现代粉末冶金材料与技术进展》(杨延志)、《现代粉末冶金材料与技术进展》(黄 伯云)等,广义的粉末冶金制品业涵括了铁石刀具、硬质合金、磁性材料以及粉末冶金 制品等。现代粉末冶金材料体系 (铁基、硬质合金、磁性材料和粉末高温合金等)是高端 制造业的重要组成。
(1) 铁基粉末冶金材料:铁基粉末冶金材料是以铁元素为主,添加 C、 Cu、Ni、 Mo、 Cr、 Mn 等合金元素形成的一类钢铁材料。其中,粉末冶金低合金钢中合 金元素之和一般在 5%(质量分数)以下,粉末冶金高合金钢有粉末不锈钢和粉末 高速钢两大类。铁基制品是粉末冶金行业生产量最大的一类材料,在一定程度 上代表一个国家粉末冶金技术水平。粉末冶金铁基材料和制品所使用的粉末主 要包括纯铁粉、铁基复合粉末、铁基预合金粉末等。粉末冶金铁基制品主要分为常规压制/烧结(P/M)铁基制品和粉末注射成形(MIM)铁基制品。其中 P/M 技术一般可生产密度 6.4~7.2 g/cm3 的铁基制品,用于汽车、摩托车、家电、 电动工具等行业,具有减震、降噪、轻量化、节能等优势。金属粉末注射成形 技术(MIM)是以金属粉末为原料,借助塑料注射成形工艺制造形状复杂的小型金 属零部件。2019年 MIM材料 70%应用的材料为不锈钢,20%为低合金钢材料; 76%产品为 3C 产品,其中手机 65.7%,计算机 4.9%,可穿戴设备 6.9%。手 机、计算机等行业用量逐年增加,目前苹果、三星、华为、 VIVO、 OPPO 等 手机、联想计算机都大量采用 MIM 零件,随着手机超薄化、智能化及大屏化的 发展, MIM 技术有望打开更大的应用空间。
(2) 硬质合金:硬质合金是以过渡族难熔金属碳化物或碳氮化物作为主体成分的粉 末冶金硬质材料。因具有较好的强度、硬度、韧性匹配性,硬质合金主要用作 切削刀具、采掘工具、耐磨零件以及顶锤、轧辊等,广泛应用于钢铁、汽车、 航空航天、数控机床、机械工业模具、海洋工程装备、轨道交通装备、电子信 息技术产业、工程机械等装备制造加工和矿产、油气资源采掘、基础设施建设 等行业领域。硬质合金是现代制造工业的脊梁。
(3) 磁性材料:粉末冶金磁性材料指用粉末成型和烧结的方法制备的磁性材料,可 分为粉末冶金永磁材料和软磁材料两大类。永磁材料主要包括钐钴稀土永磁材 料、钕−铁−硼系永磁材料、烧结铝镍钴永磁材料、铁氧体永磁材料等。粉末冶 金软磁材料主要包括软磁铁氧体和软磁复合材料等。软磁复合材料也称金属磁 粉芯,是由铁磁性粉末与绝缘介质混合经压制、烧结制备而成的一种复合材料。 近年来,风力发电、光伏发电、新能源汽车行业、5G 通讯等行业的发展对高性 能金属磁粉芯的需求正快速增长。粉末冶金法制备磁性材料的优势在于,能制 备单畴尺寸范围的磁性微粒,在压制过程中实现磁粉的一致取向,直接制出接 近最终形状的高磁能积磁体,尤其是对于难加工的硬脆磁性材料而言,粉末冶 金法的优越性更加突出。
(4) 高温合金:粉末冶金高温合金是以镍为基体,添加有 Co、Cr、W、Mo、Al、 Ti、 Nb、Ta 等多种合金元素的一类具有优异的高温强度、抗疲劳和抗热腐蚀等综合 性能的合金,是航空发动机涡轮轴、涡轮盘挡板、涡轮盘等关键热端部件的材 料。目前只有美国、俄罗斯、英国、法国、德国、中国等少数几个国家具备粉 末冶金高温合金研发、生产的能力,其中美国、俄罗斯、英国处于领先的位置。 2019 年,各国已着手设计开发使用温度达到 815℃的第四代粉末高温合金。中 国在粉末冶金高温合金领域起步较晚,在成分设计和工艺路线等方面主要参照 欧美和俄罗斯等国的成功经验。在新型粉末高温合金的研发上,国内一些主要 研究机构也紧随国际发展步伐,开展了第四代粉末高温合金成分设计等方面的 工作。
根据《新能源材料粉末冶金技术探讨》,除以上粉末冶金制品外,粉末冶金在太阳能、 风能、氢能源和燃料电池等能源领域也有广泛应用。对于新能源材料而言,粉末冶金技 术具有较强的创造性与塑造性,发挥着关键性技术作用。粉末冶金技术由于其技术原理, 使得能够在新能源领域研发出更高效、更经济的新材料。在这一发展进程中,传统粉末 冶金技术也逐渐革新,各种新技术、新工艺及新设备被研发出来,在粉末制备和成型中 发挥着重要的作用。在不久的将来,粉末冶金技术将应用、扩展到更多的行业中去。
(1) 风能材料:粉末冶金技术在风能新材料的应用主要是实现风能发电材料的制造, 实现永磁钕铁硼材料与风电机组材料的生产。
(2) 太阳能材料:粉末冶金技术在太阳能光电转化方面有着传统冶金技术不可比拟 的优势,通过粉末冶金技术制备的多晶硅薄膜在光电转化技术中能够有效替代 传统晶体硅材料,且光电转化效率提升显著,太阳能光电转化技术由于材料瓶 颈的突破,发展速度逐年加快。
(3) 储氢材料:氢能源储存的原理是,经过分解后单原子能够进入到储存材料原子 间的间隙,通过化学反应形成较为稳定和安全的金属氢化物。从宏观上看,储 存材料能够吸收氢能源,在吸收过程中会释放出化学热能,如果要多氢能源进 行利用,则需要通过对储存材料加能,使得储存化学过程进行逆反应,分解氢 化物,释放出氢原子后,再结合成氢分子。氢能源储存材料对氢能源的储存性 能远远高于物理气瓶储存效率,且储存的化学稳定性也能得到保障。粉末冶金 技术能够有效制备氢能源储存材料,并在制造过程中加入特定的稀有金属,能 够实现储存效率和储存稳定的双提高。
(4) 燃料电池材料:粉末冶金技术在燃料电池行业的应用,主要表现在对燃料电池 密封部件和电极材料的制备方面。通过粉末冶金技术的应用,可以实现合成安 全性高、倍率高的锡基合金材料及纳米Sn基合金-碳复合材料,这种材料能够大 大提升燃料电池的充放电能耗,同时能够对燃料电池的充放电安全也有一定保 障作用,粉末冶金技术的应用可以使得这种材料的生产产业化、规模化。另外, 燃料电池阴极材料为多孔的锶掺杂的锰酸镧,多孔材料的制备只能采用粉末冶 金技术。
粉末冶金是一种绿色、低能耗、高材料利用率的技术,符合高质量发展趋势
粉末冶金工艺优势突出,为可持续发展带来巨大空间。相比铸造、锻造等其他冶金工艺, 粉末冶金是最先进的金属成形工艺,也是最绿色低碳的工艺。与传统冶金工艺相比,粉 末冶金材料利用率最高(95%以上,传统机加工只有 50%)、能耗最低,根据 EPMA, 用于制造粉末冶金部件的原材料中约 80%来自回收废料,在某些情况下,将铸造或锻造 部件转换为粉末冶金可节省 40%或更高的成本。除此之外,利用粉末冶金还可加工形状 复杂的零件,生产难熔的金属以及化合物等。当使用粉末冶金技术对统一形状数量众多 的产品进行生产时,例如齿轮等费用较高的产品,可以极大降低生产成本,提高生产效 率。粉末冶金的这些优势为它的可持续发展带来了巨大的空间。 粉末冶金的高材料利用率促进了原材料的有效利用,降低了能源消耗,提高了劳动效率。 这些特性使其在汽车、电气、能源、航空航天、医疗、国防、工业和消费市场的应用中 稳固地确立了自己的地位。
粉末冶金工艺持续升级,应用市场加速扩大。粉末冶金工艺由传统的压制烧结到等静压、 金属粉末注射成形(MIM)、金属增材制造(3D 打印),工艺技术不断突破升级,应用 领域快速扩大。与传统的粉末冶金生产出的产品相比,MIM 产品具有精度高、组织均匀 等优点,采用该技术可以大批量、 低成本地生产结构复杂、性能优异的金属零件,被广 泛应用于电子产品、医疗器械、汽车等行业。金属增材制造(3D 打印)是一种革命性 的零件制造工艺,可以为 OEM(原始设备制造商)生产零件和按需生产零件,且该工 艺比其他粉末冶金工艺(如 MIM)所需的零件制造时间要更短。增材制造技术的产品应 用已从定制化产品逐步进入小批量生产阶段,多个 行业多个种类的批量化生产试制订单, 给予增材制造为主要工艺的批量化生产模式以信心,在此基础上,批量化带来的产业链 成熟化、成本降低和制造模式转变,有望带动客户群体不断扩大,以 3D 打印为设计思 路的产品将会大量出现,替代原有生产模式下的产品,我们预计增材制造在未来的制造 业发展中将起着引领性的作用。 粉末冶金的可持续价值主要来自其净成形能力和高材料利用率,可最大限度地减少能源 投入,减少对环境的影响。未来大规模化的生产中应用粉末冶金技术,可以在保证低能 耗的前提下,降低生产成本,提高生产效率。 美国近期发布的《先进制造业国家战略》提出增强环境可持续性,可持续制造是指通过 经济上合理的流程来创造制成品。所谓的合理流程是指在节约能源和自然资源的同时, 最大限度地减少对环境的负面影响。将可持续材料管理原则和增材制造纳入产品设计和 开发,可以减少制造产品所需的材料和能源,提高安全性。金属增材制造市场有望加速 扩大。 粉末冶金行业的持续增长取决于材料和材料性能、工艺和制造效率的进步。未来十年粉 末冶金技术优先发展的方向主要在:高密度粉末冶金组件、轻质材料加工、提高精度/准 确度/变化控制;金属增材制造。
中国粉末冶金行业未来的发展趋势取决于技术的进步和市场变化的机遇。技术进步与市 场发展相互作用,带来更多业务发展机会,汽车零件生产国产化为中国粉末冶金行业带 来发展机会,同时,粉末冶金的高材料利用率与低能耗的环保优势,为粉末冶金零件的 规模化生产提供了更大的发展空间。
汽车:粉末冶金的主要应用领域
提升燃油效率立法化是加快粉末冶金在汽车中推广应用的重点力量。车企需要通过减轻 重量、优化部件设计来提高燃油经济性。 粉末冶金制品在汽车中的应用主要位于发动机、变速器、汽车壳体&底盘当中,其中发 动机和变速箱中的占比达 70%,具体包括发动机中的曲轴、气门结构、废气循环冷却器、 点火系统、燃油喷射系统、空气压缩机、泵,和变速器中差动齿轮、分动箱链轮、行星 齿轮架以及汽车底盘减震器、后视镜镜托等等。 与传统零件相比,车用粉末冶金零件拥有高强度、高耐磨性等优势。例如发动机的链轮 具有高强度、高耐磨损性和优良的耐热性;变速器中的齿轮具有抗拉强度和屈服强度; 减震器使用粉末冶金零件,具有高精密薄板表面,能够减少摩擦,保证操作的稳定性, 提高乘坐舒适性等。
新能源汽车不需要复杂的发动机,因此对粉末冶金零件需求相对较少,据 MPIF 统计, 北美纯电动汽车的单车粉末冶金消耗量为 1.8~3.6kg(不包含电池粉末冶金用量)。
根据日本协会 2021 年报统计数据,北美单车粉末冶金制品重量为 16.8kg,欧洲单车粉 末冶金制品重量为 8.7kg,日本单车粉末冶金制品重量为 8.3kg。据东睦股份公告,中 国单车粉末冶金制品重量为 4.5kg。 我们假设单车上粉末冶金需求未来会有增长,增速在 3%-20%之间。根据我们预测, 2025 年全球汽车对金属粉末的需求量为 108.41 万吨。
能源:粉末冶金提升能源利用效率
除传统能源石油、天然气、煤炭对轴承、齿轮等零部件的需求外,新能源如太阳能、风 能、燃料电池等对涂层、发动机、存储等的需求,扩大了粉末冶金的应用领域。粉末冶 金技术改善了原始的制造工艺对于能源利用不充分、造成环境污染和能源浪费的现象, 从而备受推崇。
1.粉末冶金技术在太阳能材料中的应用
粉末冶金技术在太阳能利用方面主要是热电太阳能技术和光电太阳能技术。 对于太阳能的光电应用,太阳能电池是关键。太阳能电池材料的性能是保障太阳能光电 转化效率的关键,传统的晶体硅材料太阳能电池,光电转化效率相对较低,降低太阳能 利用率的同时,还制约着太阳能能源的应用范围。通过粉末冶金技术制备的多晶硅薄膜 在光电转化技术中能够有效替代传统晶体硅材料,且光电转化效率提升显著,太阳能光 电转化技术由于材料瓶颈的突破,发展速度逐年加快。 另外,太阳能的热电利用技术主要是通过太阳能吸收板吸收太阳能量,然后通过技术手 段加以利用,因此太阳能吸收板材料性能成为技术发展的关键点。粉末冶金技术能够在 吸收板制造过程中,充分研发吸收板的材料性能,发挥粉体在色素、粘结剂的作用,突 出粉末冶金技术的实践应用,从而显著提升太阳能吸收效率。 伍德麦肯兹预计 2022年,全球光伏市场年新增装机容量将同比增长 25%,实现 197GW, 累计装机容量将突破 1000GW。2022-2031 年,全球光伏并网装机容量将以年均 8%的 速度增长,2031 年达到 394GW。假设光伏组件成本为 2 元/w,则 2022 年全球光伏组 件市场规模为 3940 亿元,2031 年达到 7880 亿元。
2.粉末冶金技术在风能材料中的应用
风能是应用范围极广的新能源。而且具有充足、清洁等特点,粉末冶金技术可用来制备 两种风能发电材料,即钕铁硼永磁材料和制动片材料,这两种材料的应用能够直接影响 风能发电设备的安全性与稳定性并影响其运行。 目前常用的风电机组制动材料为铜基粉末冶金摩擦材料。铜基粉末冶金摩擦材料的摩擦 系数较小、导热性好、摩擦系数较稳定、耐磨性较好,应用在风机制动系统上大大提高 了风电机组运行的稳定性。 钕铁硼稀土永磁体是稀土永磁电机组成中的最重要的零部件,可替代传统电机,向大容 量﹑优良的发电质量、提高材料利用率、降低噪声、降低成本、提高效率的方向发展。
3.粉末冶金技术在燃料电池材料中的应用
燃料电池是一种将燃料气体(或液、固燃料气化后的气体)的化学能直接转换为电能的 装置。粉末冶金技术主要应用于燃料电池的密封部件和电极材料中。通过粉末冶金技术 的应用,可以实现合成安全性高、倍率高的锡基合金材料及纳米 Sn 基合金—碳复合材 料,这种材料能够大大提升燃料电池的充放电能耗,同时对燃料电池的充放电安全也有 一定保障作用,粉末冶金技术的应用可以使得这种材料的生产产业化、规模化。 另外,燃料电池阴极材料为多孔的锶掺杂的锰酸镧,多孔材料的制备只能采用粉末冶金 技术。
4.粉末冶金技术在储氢材料中的应用
氢能源由于其燃烧产物是水,属于零碳清洁绿色能源,氢能源的应用关键点主要在两个 方面,一个是氢能源的生产,另一个则是氢能源的储存。氢能源储存而言,因其化学性 质活泼,具有一定的爆炸危险,因此氢能源储存方式和储存材料的选择具有严格的要求。 储氢合金是能够储存氢能源的金属或合金材料的统称,拥有较强的捕获氢的能力,能够 在一定的压力、热度的基础上把氢分子分解成合金中的单个原子。氢能源储存的原理是, 经过分解后单原子能够进入到储存材料原子间的间隙,通过化学反应形成较为稳定和安 全的金属氢化物,从宏观上看,储存材料能够吸收氢能源,在吸收过程中会释放出化学 热能,如果要多氢能源进行利用,则需要通过对储存材料加能,使得储存化学过程进行 逆反应,分解氢化物,释放出氢原子后,再结合成氢分子。氢能源储存材料对氢能源的 储存性能远远高于物理气瓶储存效率,且储存的化学稳定性也能得到保障 金属基储氢合金一般有镁基储氢材料、稀土系储氢材料及钛系储氢材料等,对于先进的 储氢合金,一般采用机械合金化、氢化燃烧合成和还原扩散法等粉末冶金技术来制备。 目前镁系储氢材料主要用于燃料电池中的燃料氢,稀土系储氢材料主要用于镍氢电池。
5. 粉末冶金技术在其他能源材料中的应用
粉末冶金技术除了可以应用于风能与太阳能方向之外,它在核能开发、锂电池制造等方 面同样有着不可忽视的应用效果。 以锂电池与粉末冶金技术结合为例,锂电池中的新型电解质、能量密度等都和粉末冶金 技术有着紧密关系。利用超微粉末制造纳米晶体材料和纳米管,能够提升锂电池的充电 速度、延长锂电池的使用时间。 在核能开发方面,粉末冶金技术的应用同样十分广泛,在铍的制备方面,粉末冶金技术 可以提升真空热压和半成品加工的质量,有着不可替代的积极作用。粉末冶金技术涉及 由铸锭生产粉末的工艺(机械磨碎或者溅射熔化的镀)和压制工艺如真空热压(VHP)和 热等静压(HIP)等。
航空航天:3D 打印适配其结构复杂且轻量化的要求
在飞行器发动机发展进程中,零部件的设计制造通常具有以下特征:结构复杂且一体化 程度高,轻量化要求高,服役环境恶劣等特性使铸造或者锻造+机加等传统技术在很大 程度上已经无法满足零部件快速迭代的研发、设计及验证需求,而增材制造技术作为一 种固体无模快速成型技术,具有快速响应,制造自由度高、设计自由度高等优势,同时 增材制造技术可以显著降低买飞比(BTF,Buytoflyratio),即原材料重量与最终成品重量 的比值,相比传统加工技术(BTF>10:1),增材制造技术可以将买飞比控制在 BTF<3:1, 大幅度提高原材料的利用率,降低材料消耗。
1.飞行器发动机的的静态构件对服役性能的要求相对较低,增材制造技术在该领域的应 用已经较为成熟
燃油喷嘴作为燃烧室的关键组件之一,其作用是使液态燃料雾化从而形成燃料颗粒群, 达到将液/气态燃料与空气进行高效混合的目的,从而在燃料室产生稳定的火焰回流区, 使产生的旋流火焰满足燃烧室点熄火、燃烧效率、燃烧排放物和出口温度等指标要求。 增材制造为先进复杂燃油喷嘴的整体制造提供了可能。金属增材制造将原来的 20 个部 件作为一个整体被制造出来,喷嘴重量轻 25%,耐用度提升 5 倍,成本效益高 30%。采 用 3D 打印燃油喷嘴可以解决燃油混合和燃油喷射等问题,同时还可以减少制造成本, 提高使用寿命。
在航空发动机整流叶片生产中,普惠公司采用 SLM 技术制备了航空发动机整流叶片, 与传统的叶片制造工艺相比,实现了 50%的减重并缩短了制造周期。 在发动机涡轮部件生产中,金属增材制造的点阵结构在发动机涡轮部件的应用可达到减 重和改善性能的作用。 在热交换器和散热器生产中,增材制造技术可以提高热装置的效率,省去了钎焊工艺, 更容易实现内部形状复杂的构件制造。
2.飞行器发动机的的动态构件对服役性能的要求较高,多采用增材制造技术
在飞行器发动机的动态部件(如转子叶片)在其服役条件下会受到极端性能要求和恶劣 环境(如高压、温度、腐蚀等)的影响,要求零件采用特殊材料的同时具有复杂的叶身 结构,该制造工艺特点决定了其采用增材制造技术。 增材制造技术允许设计人员直接进行复杂三维零件的设计制造,降低制造难度同时实现 生产成本控制。
3.金属增材修复技术在飞行器发动机上的应用
作为增材制造技术的一个重要应用分支,金属增材修复技术特别是激光直接能量沉积技 术(L-DED)已广泛应用于修复服役过程中的受损部件。通过原位修复,减少了原有零 件的更换或者报废,在缩短生产周期的同时实现了降低成本。 《金属粉末增材在飞行器发动机的应用及挑战》中指出,以整体叶盘以及整体叶环零件 为例,其制造成本可能高达数十万美元,采用修复技术可以避免整个零件的报废,具有 显著的经济效益。发动机的高压压气机在工作过程中,压气叶片会与封严结构产生接触, 导致叶片叶尖磨损。叶片故障检查结果表明,叶尖磨损损伤率为80%,报废率接近50%。 为了修复叶片实现再次应用,传统焊接修复方法不能满足服役要求,采用激光直接能量 沉积技术,可以利用激光能量集中、光束轨迹自动可编辑、光束移动速度快且运行控制 稳定等特点,较好地解决该类叶片修复的难题。
医疗行业:MIM 增速最快的下游
据《金属粉末注射成型技术在医疗产品上的应用》,医疗产品一般要求具有良好的使用 性和足够长的使用寿命,并且在结构和形状设计上有灵活的设计性。自 20 世纪 80 年代 初期 MIM 技术首次在医疗产品中得到应用,至今已经成为 MIM 市场中增长最快的领域。 医疗用MIM产品大部分使用的不锈钢材料,主要牌号是316L和17-4PH,还有钛合金、 镁合金、金、银、钯等。 医疗行业使用 MIM技术主要来制造外科手术工具、牙齿正畸形托槽、膝盖植入零件、助 听器声管等等。
1.外科手术工具
外科手术工具要求具有高强度、低血液污染和能够实现侵蚀性消毒程序等要求。外科手 术工具中的内窥镜剪刀、腹腔镜外科手术剪刀、针推进器与末端吊钩、活体组织检查仪、 缝合夹爪、腹腔镜夹爪等器械或器械中的部件均需要 MIM 工艺完成。 据东睦股份,腹腔镜外科手术剪刀中的螺旋齿轮,使用 MIM工艺制造比切削加工制造节 省 80%的成本;MIM 制作的针推进器与末端吊钩与切削加工制造工艺相比节省 90%的 成本;MIM 制作的活体组织检查仪中的零件与切削加工制造工艺相比节省 50%的成本。
2.牙齿正畸形托槽
牙齿矫形工具是最早使用 MIM 工艺进行制造的医疗产品,其尺寸非常小、生物兼容性和 耐腐性好,主要使用 316L 不锈钢。德国 Forestadent 公司用 MIM 技术生产出一种双向 倒勾式的正畸形托槽,机械固位力提高 30%,且利用 MIM 工艺一次成型进行抛光后, 能使托槽对弓丝的摩擦力大大降低。
3.膝盖植入零件
目前利用 MIM 技术可以生产部分替代骨头和关节的零件,主要应用的是钛合金。利用 MIM 成形后再进行热等静压,后续再进行喷丸、抛光和阳极氧化处理,以得到较好的表 面性能,降低了与人体的摩擦,提高相容性和使用寿命。
4.助听器声管
利用 MIM 工艺制成的助听器声管,具有提升音率和促进听力的效果,且 MIM 技术与传 统生产工艺相比可以降低 20%的生产成本。 此外医疗领域还可以应用 MIM 技术生产介入治疗支架、钨高密度合金注射器的防辐射 屏蔽、显微外科机械手、微型泵内窥镜零件和药物吸收剂等。 增材制造技术在医疗领域的应用也逐渐拓展,在药物释放系统、医用植入物以及医疗器 械制造中得到了大规模的应用。 全球生物医用材料市场已超过 4500 亿美元,年增长率为 15.8%。在全球生物医用材料 市场中,需求量最大的是骨科生物医用材料,市场份额约占全球市场的 38%;心血管生 物医用材料占 36%,位居第 2位,其次需求量较大的是牙种植体,约占全球市场的 10%;紧随其后的是占市场份额 8%的整形外科生物医用材料。 据 Evaluate MedTech 预测,2021-2028 年,全球医疗器械行业将以 5%的复合年增长率 增长。细分领域,糖尿病护理和骨科的复合年增长率为 7%,诊断和药物输送等较大领 域的复合年增长率较低,分别为 3%和2%。市场规模预计在2025年突破 1000亿美元, 在 2028 年达到 1150 亿美元。
电动工具:电动化智能化趋势推动需求增长
中国是世界上电动工具生产和出口大国,技术壁垒不高导致企业降本诉求高涨,粉末冶 金在低成本、高性能、高精度方面的卓越表现使得其受到电动工具生产厂家的青睐。常 见电动工具中的粉末冶金金属件有凸轮、杆件、配重、轴承、轴承座、电刷架、离合器、 转子、缸体、端盖、叶片、卡盘手等。
根据 EV Tank 统计,2022 年全球电动工具出货量预计分别为 5.1 亿只,市场规模为 571.9 亿美元,同比 2021 年分别下滑 12.6%和 10.2%,为近几年电动工具最大下滑幅 度。展望未来 EV Tank 预计全球电动工工具行业将在 2023 年逐步恢复增长,预计到 2026 年全球电动工具出货量将超过 7 亿台,市场规模或超过 800 亿美元。
家电:传统领域需求稳定增长
粉末冶金制品在家电中的应用主要包括:家用冰箱的压缩机中的连杆、活塞、阀门、进 排气阀导管、上下轴承、平衡块、缸体、叶片等;洗衣机、干燥机之类设备中使用的偏 心齿轮和齿条齿轮;洗涤机中的水泵叶轮;电风扇中使用的多孔自润滑轴承;吸尘器中 的齿轮与磁体等。 家用电气零件中的制冷压缩机和多孔自润滑轴承只能利用粉末冶金工艺生产,其中粉末 冶金含油轴承由于具有自润滑性、噪声小、价格便宜、适于大批量生产,已广泛应用于 洗衣机和电风扇电机中,且铁基含油轴承正在对铜基含油轴承进行替代。 家用空调排风扇、吸尘器中的复杂形状齿轮和磁体等利用粉末冶金生产工艺较优,据九 菱科技招股说明书,同种产品采用粉末冶金材料,其成本相比降低 75%,效率提高 1.7 倍。 因此,从提高家电材料的性能或降低家电用材成本等方面来看,开发和应用粉末冶金材 料对于家电行业意义重大。
根据九菱科技招股说明书,旋转压缩机的空调和冰箱,每台需要粉末冶金结构件 80- 350g;冰箱连杆式压缩机,每台需要粉末冶金结构件 100g;滑动螺杆式空调和冰箱压 缩机,每台需要粉末冶金零件 30-200g。 我们按照单台电器的粉末需求量为 200g,未来全球冰箱与空调的增速为 5%测算,2025 年全球空调与冰箱对粉末的需求量将达到 9.20 万吨。
软磁材料:新能源扩大其应用规模
磁性材料多用于电网变压器、光伏储能逆变器、新能源汽车的 OBC 和 DC-DC、充电桩、 UPS 电感、空调 PFC 电感以及无线充电导磁片等领域。磁性材料粉末可以经压制成型 变成所需产品。我们认为在新型电力系统建设铺开、环保节能主旋律下,非软磁材料需 求快速提升。光伏发展进入快车道,光伏装机量不断增长以及组串式逆变器市占率提升 将带动金属软磁粉芯需求大幅增长;同时储能在“双碳”政策推动下发展加速、新能源 汽车及充电桩快速发展都将带动金属软磁粉芯等软磁材料需求提升。 UPS 在“东数西 算”工程推动下受益于数据中心规模提升、无线充电器领域在消费电子增速恢复且无线 设备渗透率提升下有望迎来需求提升、变频空调预计将随着 2020 年 7 月国家空调能效标准的提高逐渐替代定频空调,均将对软磁材料需求有明显提振。
根据我们2022年3月份在深度报告《软磁:新能源加速扩大软磁市场规模》中的测算, 软磁材料需求量预计将由 2020 年的 23.95 万吨增长至 2025 年的 48.88 万吨,复合增速 为 15.34%;市场规模将由 2020 年的 57.89 亿元增长至 2025 年的 150.77 亿元,复合增 速为 21.10%。其中光伏与新能源汽车领域需求增长明显,2025 年两者在软磁材料中的 市场规模占比分别为 22.4%和 18.5%。
金属粉末重点上市公司梳理
铂科新材:合金软磁粉龙头
深圳市铂科新材料股份有限公司成立于 2009 年 9 月,2015 年整体变更为股份有限公司, 于 2019 年 12 月在深圳创业板上市交易。公司自设立以来一直从事合金软磁粉、合金软 磁粉芯及相关电感元件产品的研发、生产和销售,为下游用户电力电子设备或系统实现 高效稳定、节能环保运行提供高性能软磁材料、模块化电感以及整体解决方案。 公司主要产品包括合金软磁粉(制造合金软磁粉芯的核心材料)、合金软磁粉芯(电感 元件的核心部件)和电感元件,主要应用于发电、输配电、用电等电能变换各环节各类 电能变换设备中,以实现电能存储和变换,终端领域主要是光伏、储能、新能源汽车与 充电桩、数据中心、变频空调等。 公司依托优异的产品性能及长期可靠的的供货能力,已与 ABB、比亚迪、格力、固德威、 华为、锦浪科技、美的、TDK、台达、阳光电源、伊顿、中兴通讯(按字母排序,排名 不分先后)等一大批国内外知名厂商开展了广泛的技术和市场合作。
公司金属软磁粉末产品主要有铁硅软磁粉、铁硅铝软磁粉、铁硅铬软磁粉和片状铁硅铝 软磁粉,制粉工艺主要以水雾化和气雾化为主。另外,公司成功开发了高效率的非晶和 纳米晶软磁粉末,目前已经由实验转向了批量生产,其低损耗特性可以有效提高电感产 品的效率,目前得到了台系等电感企业的广泛认可。2017 年及之前,由于粉末产能不 足,公司外购铁硅铝退火粉、铁硅气雾化粉进行再销售或加工成粉芯,此时毛利率较低; 2018 年后,公司自产磁粉产能增加,可实现铁硅气雾化粉等粉末的自产自用,随着公 司经营重心向粉芯板块的转移,可供外售的粉末大幅减少,因此 2018 年公司粉末销售 收入大幅降低,但毛利率由30%提升至了76%。近两年来公司在粉末领域重点布局,销 售收入逐年攀升。2021 年金属软磁粉末销售收入同比增长 29%至 1349 万元,毛利率为 70%。公司软磁粉末完全可以满足下游粉芯的生产需求,且有部分对外销售,保证公司 合金软磁粉芯高盈利的同时也可以额外贡献业绩。 2021 年公司合金软磁粉芯年产能 2.5 万吨,产量 2.34 万吨,产能利用率为 93%。2022 年二季度公司合金软磁粉芯销售量约为 7800吨,且公司预计三四季度平均产能在 8500- 8600 吨,全年实现约 3.1 万吨的产出。河源生产进度如期建设中,公司预计明年可开始 第一条线的产能爬坡。芯片电感方面,公司从 7 月份开始逐步交货,截至半年报时已有 2000 万左右的订单,目前稳定供货中。
东睦股份:PM、MIM、SMC 三大粉末冶金业务并驾齐驱
东睦股份作为中国粉末冶金新材料行业的龙头企业,是中国最大、世界领先的粉末压制 成形(P&S)制造企业,是中国领先的软磁复合材料(SMC)制造企业,也是中国最大 的金属注射成形(MIM)制造企业之一,前身为成立于 1958 年的国营企业-宁波粉末冶 金厂。公司于 2004 年在上海证券交易所上市。 公司以 P&S、SMC 和 MIM 三大新材料技术平台为基石,致力于为新能源和高端制造提 供最优新材料解决方案及增值服务。产品为绿色环保、节能节材的粉末冶金新材料核心 零部件,已覆盖新能源、5G 通信、智能手机、可穿戴设备、医疗器械、汽车、高效节 能家电等领域。 公司P&S技术平台产品主要应用于汽车、家电、电动工具等。公司长期与国内外中高端 汽车行业相关客户合作,有丰富的汽车产品生产经验。部分零件入泵类、减震器、汽 车空调零件等可通用于燃油汽车、混动汽车和新能源汽车。
公司 SMC 板块中,子公司浙江东睦科达明年 1 月前可具备年产 4 万吨的生产能力; 2021 年 12 月,公司在山西东睦现有空置场地先行启动年产 6000 吨软磁复合材料生产 线基地建设,截至目前,该基地已建成并部分投产。公司在山西建设 SMC 第二生产基 地,以山西东睦磁电有限公司为实施主体,建设“年产 6 万吨软磁材料产业基地项目”, 项目预计总投资 7 亿元,其中固定资产投资约 5.5 亿元,达产后预计可实现年产 6 万吨 软磁材料的生产能力。公司软磁材料目前主要服务于光伏逆变器、新能源汽车车载/充 电桩、5G/4G、电源等,也有应用在家电、燃油汽车等领域。目前国内光伏主要厂商都 是公司主要客户。截至 2022 年第三季度,SMC 板块中光伏销售收入占比约 42%。公司 SMC 在新能源车载领域中的应用主要为 PFC 电感,boost/buck 电感磁粉芯材料, 主要有 Fe-Si-Al、Fe-Si、Fe-Si-Ni、Fe-Ni 等金属磁粉芯。 MIM 是公司三大技术平台之一,目前主要应用于消费电子领域,但也可应用于汽车、医 疗器械、工具锁具等长周期领域。公司 MIM目前在重点发展折叠屏铰链业务的同时,大 力发展长周期领域业务。公司 MIM目前粉体以外购为主,但最核心的喂料技术为上海富 驰自主研发,具备较大的技术竞争优势。
悦安新材:羰基铁粉龙头,主攻超细金属粉末
悦安新材成立于 2004 年,2021 年上市。是一家专注于超细金属粉体新材料领域的高新 技术企业,聚焦 500 纳米-50 微米细分领域,主要从事羰基铁粉、雾化合金粉及包括软 磁粉、金属注射成型喂料、吸波材料在内的深加工产品的研发、生产与销售。 公司成立以来立足于羰基铁粉产业,目前总产能为 5850 吨/年,产能、技术与客户认可 度比肩国际老牌羰基铁粉巨头公司巴斯夫。公司 IPO 募投项目为 6000 的羰基铁粉产能 和 4000 吨的雾化合金粉产能,雾化合金粉产能主要为 2000 吨软磁粉芯用雾化合金粉、 1400 吨金属注射成型用雾化合金粉、500 吨激光熔覆用粉末以及 100 吨 3D 打印用粉 末。羰基铁粉自 2022 年底开始每年释放 2000 吨产能,达产后总产能将达到 11850 吨/ 年。
金刚石工具以及电磁领域的吸波材料等。在粉末冶金领域,超细铁粉可满足粉末冶金对 于高密度和可压制性的需求,其中羰基铁粉制成的粉末冶金产品可以使产品寿命延长 5~10 倍。在电子元器件领域,超细粉末适用于 1MHz 以上高频和超高频场景,目前主 要用于电子软磁。消费类电子产品更新换代周期缩短和新能源汽车产销量快速增长以及 单车电子价值量提升将显著提高电子类软磁对羰基铁粉的需求。另外随着第三代半导体 的普及,电力软磁工作频率有望由 10-50KHz 提升至几百 K 至 2MHz 之间,届时 10 微 米以下的细粉将凭借功耗优势市占率快速提升。在吸波材料领域,公司采用微米级羰基 铁粉或球形合金粉末为原材料,通过特殊表面修饰处理和化学表面包覆工艺,能够有效 地实现粉末片状化的改型,达到吸波的作用。公司通过这些优化制得的吸波材料磁导率 更高,具有低介电、高磁损耗、阻抗匹配特性好的特点,适用于 0.1GHz-70GHz 范围内 的电磁屏蔽和微波吸收。另外公司通过拓展雾化合金粉以及降低羰基铁粉成本有望逐步 打开新能源电力市场。
博迁新材:纳米金属粉末龙头
江苏博迁新材料股份有限公司,成立于 2010 年,是一家集高端纳米金属粉体材料研发、 生产、销售为一体的国家高新技术企业,是中国纳米金属材料研发与产业化应用的开拓 者之一,旗下拥有五家境内外子公司与分公司。 公司的主营业务为电子专用高端金属粉体材料的研发、生产和销售。目前公司产品主要 包括纳米级、亚微米级镍粉和亚微米级、微米级铜粉、银粉、合金粉。 公司产品是电子 信息产业的基础材料,主要用于电子元器件制造,其中镍粉、铜粉主要应用于 MLCC 的 生产,并广泛应用到消费电子、汽车电子、通信以及工业自动化、航空航天等其他工业 领域当中。 公司现拥有物理气相法金属粉体生产线 92 条,其中镍原粉年产能 1720 吨,铜原粉年 产能 122.4 吨,银原粉产能 40 吨。公司 IPO 募投项目新增产能镍原粉产能 1260 吨, 铜原粉产能 80 吨,银原粉产能 20 吨。
公司采用常压下物理气相冷凝法(PVD)制备超细金属粉末,填补了国内该技术产业化的 空白,并且公司作为唯一起草单位,起草与制定了我国第一项电容器电极镍粉行业标准, 是目前全球领先的实现纳米级电子专用高端金属粉体材料规模化量产及商业销售的企业。 公司与三星电机、台湾国巨、台湾华新科、风华高科、潮州三环等国际、国内电子元器 件行业领先企业保持了长期良好的业务合作关系,可以积极响应客户的需求并配合开发 新产品。2022 上半年,公司对三星电机的销售收入占主营业务收入的比重为 72.2%, 客户集中度较高。 新产品研发方面,公司新建一条 HJT 异质结电池用银包铜粉中试产线,持续推进产品稳 定性测试,深入挖掘规模化生产降本增效潜力,为后续银包铜粉规模化量产提供有效技 术支撑;锂电池负极材料用纳米硅粉领域,通过对生产过程持续的工艺优化,硅粉单产 效率得以有效提升。银包铜粉与纳米硅粉的研发推进,将为公司后续发展提供长足动力。
屹通新材:雾化铁粉龙头
杭州屹通新材料股份有限公司,成立于 2000 年 7 月,于 2021 年 1 月 21 日在深圳证券 交易所成功挂牌上市。公司是一家以高品质铁基粉体为核心业务的高新技术企业,主要 生产水雾化铁粉、合金钢粉、易切削钢粉、不锈钢粉、烧结硬化粉、金刚石胎体粉、磁 性系列粉、超细铁粉、焊材及冶炼添加剂等铁基粉末产品。产品广泛应用于交通工具、 家用电器、电动工具、工程机械及医疗器械等终端行业。 公司以各类废旧金属为原材料,通过熔炼、水雾化及还原等一系列复杂工艺流 程,将废 旧金属资源转化为具有高附加值的制造业基础原材料,兼具变废为宝和节能减排双重属 性。公司已成为国内铁基粉体行业的领军者之一及进口替代的先行者,下游客户进而服 务于包括奔驰、宝马、比亚迪、博世、电装,爱信、格力、美的等知名企业。
公司现有厂区 8 万吨铁基粉末产能将继续生产,IPO 募投 7 万吨项目(4.5 万吨高性能 纯铁粉、0.7 万吨添加剂用铁粉、1.2 万吨无偏析混合粉、0.15 万吨铜基系列粉、 0.3 万 吨低合金粉及 0.15 万吨不锈钢粉),据公司 5 月投资者交流,一期已经完成大部分施工 建设,磁性材料和 MIM 粉在试生产过程中,部分型号产品性能指标合格,正准备给客 户送样过程中。 2022 年 6 月 24 日,公司召开了第二届董事会第六次会议,审议通过了《关于投资建设 年产 2 万吨新能源用金属软磁粉体项目的议案》,该项目新增 250kg 真空气雾化装置、 500kg 水雾化装置、超声波筛机等生产设备,形成年产 2 万吨高端金属软磁粉体生产能 力,产品主要为大临界尺寸高球形度非晶软磁粉体、兆赫兹超低损耗纳米晶软磁粉体、 芯片电感用铁硅铬粉体、5G 基站用高直流偏置铁镍粉体、光伏逆变器用高饱和磁通密 度铁硅粉体等 。
有研粉材:铜粉和锡粉龙头
有研粉末新材料股份有限公司成立于 2004 年 3 月,是由有研科技集团(隶属国务院国 资委的中央企业)控股,专业从事有色金属粉体材料的设计、研发、生产和销售,是国 内铜基金属粉体材料和锡基焊粉材料领域的龙头企业。2021 年,公司在上交所科创板 上市。 产品主要用于粉末冶金、超硬工具、微电子封装、摩擦材料、催化剂、电工合金、电碳 制品、导电材料、热管理材料、3D 打印等领域,其终端产品广泛应用于汽车、高铁、 机械、航空、航天、化工、电子信息、国防军工等领域。 公司主营产品包括铜基粉体、微电子锡基焊粉和 3D 打印粉体,制粉工艺以电解法和雾 化法为主。公司原有年产能铜粉 2.8 万吨、锡粉 2100 吨、3D 打印粉 40 吨,IPO 募投 项目规划建设 1.73 万吨铜粉、1100 吨锡粉,另规划了 500 吨 3D 打印粉末和 2000 吨高 温粉末材料(软磁粉末、MIM 粉末、真空钎焊粉末)。
云路股份:非晶材料龙头,发力纳米晶
青岛云路先进材料技术股份有限公司成立于 2015 年 12 月,是由军工央企中国航空发动 机集团有限公司控股的混合所有制企业。公司于 2021 年 11 月 26 日于上海证券交易所 科创版上市。公司 13 年来专注于先进磁性金属材料领域,已形成非晶合金、纳米晶合 金、磁合金粉末三大材料及其制品系列。公司具备国内材料企业鲜有的“科学、工程、 设计”三维度、全产业链、深度技术拓展能力,产品覆盖 50Hz 至 100MHz 的全球电力装 备、移动载荷电机、光伏、家电用功率电感、无线充电、消费电子用贴片电感、极端应 用、电力电子用 EMI 滤波器的超宽频段应用领域。 公司主要生产软磁材料及衍生品,包括非晶合金薄带及铁心、纳米晶超薄带、雾化和破 碎粉末及磁粉芯等产品。产品主要应用于电力配送领域,同时向新能源汽车、新基建、 轨道交通、消费电子、白色家电、粒子加速器等下游行业领域延伸。
非晶合金又称“液态金属、金属玻璃”,是一种新型软磁合金材料,主要包含铁、硅、 硼等元素。其主要制品非晶合金薄带是采用急速冷却技术将合金熔液以每秒 160℃的速 度急速冷却,使原子来不及有序排列结晶,形成厚度约 0.03mm 的非晶合金薄带。目前 非晶合金薄带主要应用于全球配电变压器领域。 纳米晶主要指铁基纳米晶合金,是由铁、硅、硼和少量的铜、铌等元素经急速、高精度 冷却工艺形成非晶态合金后,再经过高度控制的退火环节,形成具有纳米级微晶体和非 晶混合组织结构的材料。与铁氧体软磁材料、非晶软磁材料等材料相比,纳米晶超薄带 因其高饱和磁度、低矫顽力、高初始磁导率、高居里温度等材料特性可以缩小磁性器件 体积、降低磁性器件损耗,属于新型磁性材料。纳米晶超薄带产品是制造电感、电子变 压器、互感器、传感器、无线充电模块等磁性器件的优良材料,主要应用于消费电子、 新能源汽车、家电、光伏、粒子加速器等领域,满足电力电子技术向大电流、高频化、 小型轻量、节能等发展趋势的要求,目前已在智能手机无线充电模块、新能源汽车电机 等产品端实现规模化应用。
铂力特:金属 3D 打印粉末一体化龙头
西安铂力特增材技术股份有限公司,成立于 2011 年 7 月,2019 年 7 月 22 日正式在上 交所科创板挂牌上市。 公司是一家专注于工业级金属增材制造(3D 打印)的高新技术企业,业务覆盖金属增 材制造全产业链,粉末原材料、装备、定制化产品及服务广泛应用于航空航天、工业机 械、能源动力、科研院所、医疗研究、汽车制造、船舶制造及电子工业等领域。尤其在 航空航天领域,公司金属 3D 打印定制化产品在国内航空航天增材制造金属零部件产品 市场占有率较高。公司主要客户包括航空工业下属单位、中国航发下属单位、航天科工 下属单位、航天科技下属单位、中国商飞、中国神华能源、中核集团下属单位、中船重 工下属单位以及各类科研院校等。公司是空中客车公司金属增材制造服务的合格供应商, 2018 年 8 月,公司与空中客车公司签署 A350 飞机大型精密零件金属 3D 打印共同研制 协议,从供应商走向联合开发合作伙伴,标志着公司在金属 3D 打印工艺技术与生产能 力方面达到世界一流水平,尤其在大型精密复杂零件打印方面,处于领先地位。
斯瑞新材:布局高性能金属铬粉
陕西斯瑞新材料股份有限公司,成立于 1995 年,于 2022 年 3 月 16 日在科创板上市交 易。公司专注于高性能铜合金材料、制品及其它特殊铜合金系列材料的研发和制造,向 客户提供高强高导铜合金材料及制品、中高压电接触材料及制品、高性能金属铬粉、医 疗影像零组件等产品的关键基础材料和零组件,公司产品广泛服务于中高压电力开关、 轨道交通电机、新能源汽车、航空航天、高端医疗设备、模具制造、钢铁冶金结晶器、 新一代电子信息产业等领域。 公司服务的客户主要有西门子电力、ABB、施耐德、东芝、伊顿、美国 GE 交通、法国 阿尔斯通、中车、国家电网、西门子医疗等世界五百强企业。
另外,公司瞄准增材制造和粉末冶金行业,掌握了射频等离子球化工艺制备球形铬粉的 技术能力,可应用于 3D 打印等领域;同时生产的高性能铜合金雾化粉末能够广泛应用 于制造火箭发动机燃烧室内衬等。 公司原有铬粉产能 700 吨,2021 年启动建设年产 2000 吨高性能金属铬粉生产线,全力 满足以两机专项、火力发电超临界机组为主的高端高温合金对高性能金属铬粉的需求。 主要客户有西部超导等。
中洲特材:高温合金 3D 打印粉末已批量生产
上海中洲特种合金材料股份有限公司,创建于 1993 年,是一家集钴基、镍基、铁基、 铜基系列合金等高端材料及新材料研发、生产、销售于一体的专业化公司。于 2021年 4 月上市。 公司主要产品包括铸造高温耐蚀合金、变形高温耐蚀合金、特种合金焊材、表面堆焊服 务四大类。产品主要应用于石油化工、化学工业、核电、汽车零部件、新能源、航天、 军工、船舶、环保、医用新材料、海水淡化、3D 打印合金粉末、玻璃模具、页岩气等 众多领域。 在海外市场,公司产品早已进入全球高端制造业配套体系,与 Emerson、GE、 Schlumberger、Flowserve 等全球知名企业形成了长久的配套合作,是 Emerson/Fisher 中国大陆极少数特材供应商之一;SHELL 高温合金铸件(含砂铸)、锻件极少数的全球 供应商之一;BP 精铸件、砂铸件极少数中国大陆供应商之一。在国内市场,公司产品 与中石化、中车集团、上海电气、中核苏阀、北京航天长征机械等 30 多家大型央企、 上市公司形成了稳定的配套关系。公司生产的镍基高压氧气阀铸件成功替代进口产品。
章源钨业:钨粉和碳化钨粉龙头
崇义章源钨业股份有限公司成立于 2000 年 2 月,于 2010 年在深交所上市。公司是国内 集钨的采选、冶炼、制粉、硬质合金和深加工、贸易为一体的大型钨行业骨干企业。公 司拥有 6 座采矿权矿山,8 个探矿权矿区。国家对钨矿开采实行总量控制,配额生产, 不断规范钨矿勘查开采审批管理,允许在矿权范围内进行资源整合,但不再新增钨采矿 权。 公司主要产品包括碳化钨粉(主要用于生产硬质合金)、钨粉(加工钨制品、钨合金)、 仲钨酸铵(用于制造三氧化钨或蓝色氧化钨制金属钨粉,还用作制造偏钨酸铵及其他钨化合物,用于石油化工行业作添加剂)、硬质合金等。硬质合金广泛应用于刀具材料, 用在车床等机械加工器械上,可用来切削有色金属、铸铁、石墨等材料,也可切削不锈 钢、高温钢等难加工的材料。硬质合金具有很高的硬度、强度、耐磨性和耐腐蚀性,广 泛应用于军工、航空航天、机械加工、冶金、石油钻井、矿山工具、电子通讯、建筑等 领域。
公司金属粉末产品主要有仲钨酸铵粉、氧化钨粉、钨粉、碳化钨粉、热喷涂粉。公司超 细纳米级钨粉、碳化钨粉通过超细 APT生产工艺和紫钨生产工艺两种不同的工艺路线加 工。碳化钨粉的生产流程是钨矿经冶炼-仲钨酸铵-煅烧-氧化钨-还原-钨粉-碳化碳化钨粉, 公司超细纳米碳化钨粉的生产有两种核心工艺:一是通过冶炼得到超 细仲钨酸铵、超细 氧化钨、超细纳米级钨粉后碳化得到超细纳米级碳化钨粉;二是仲钨酸铵经煅烧生产紫 钨(WO2.72)经还原得到超细纳米级钨粉后,再经碳化得到超细纳米级碳化钨粉。 公司 2021 年钨粉产量排名国内行业第二,碳化钨粉产量排名国内行业第二。目前,公 司钨粉的产能为 1.5 万吨,碳化钨粉产能为 1.06 万吨。2022 年上半年,公司投资建设 “超高性能钨粉体智能制造项目”,项目建成后,公司将新增 5000 吨超细碳化钨粉的产 能。 公司凭借着强大的钨粉产业链业务,形成了较强的竞争优势。
(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)
精选报告来源:【未来智库】。「链接」
2、纳米银粉与微米银粉的区别
纳米银粉与微米银粉的区别
纳米银粉与微米银粉的区别。
1、纳米银粉:粉体粒径小,而具有比表面积大、活性大、催化活性高、熔点低、烧结性能好等优点。
2、微米级粒子的直径是纳米级粒子的一千倍,而微米银平均粒子直径为10微米,既一万纳米。除微米银外,其他抗菌产品包括纯金属银产品和化学银混合物都是纳米级的。纳米银粒子会渗入皮肤进入血液中,在人体中游移。
高纯银与银离子 银纤维 纳米银到底有啥区别?
高纯银与银离子、银纤维、纳米银的主要区别:
1、定义不同
高纯银是指杂质含量< 10ppm的银;
纳米银(Nano Silver)就是将粒径做到纳米级的金属银单质;
银离子是银原子失去一个或一个以上电子形成的带正电荷的阳离子;
银纤维是通过特殊技术,将一层纯银永久的结合在纤维表面上所得的高科技产物。
2、特性不同
高纯银是灰白色有金属光泽的贵金属,具有良好的导热和导电性能;
纳米银是以纳米粒子形式存在,具有抗菌性和良好的导电性;
银离子是以水溶液形式存在。其溶液无色透明,无任何固体颗粒,具有氧化性和水解性;
银纤维是以尼龙纤维的表面形成一层银的镀层而形成的纤维形式存在,具有良好的防辐射和抗静电性能。
3、应用领域不同
高纯银应用在工程技术领域;
纳米银应用在抗菌、催化、超导、光学材料等领域;
银离子应用在净水,护肤品,日用品,医药品等领域;
银纤维应用在科研、防辐射、医疗保健等领域。
参考资料来源:百度百科-高纯银
参考资料来源:百度百科-银离子
参考资料来源:百度百科-银纤维
参考资料来源:百度百科-纳米银
纳米银溶液最主要的功效是什么,有哪些特点?
纳米银的功效:
银离子以其抑制细菌蛋白质合成的特性,达到抑菌的目的,从而保护女性敏感部位的皮肤,有效制止因细菌引起的外阴瘙痒。
其杀菌时间长,具有杀菌活性强的独特优势,能够尽可能的规避妇女经期感染,由于银离子与女性阴道内的正常生理PH值相同。
长期使用也不会破坏阴道本身的酸性环境及自净能力,有效预防多种妇科疾病。
纳米银的特点:
纳米银粉与普通银粉相比,由于其尺寸介于原子簇和宏观微粒之间,因此也具有纳米材料的表面效应、体积(小尺寸)效应、量子尺寸效应、宏观量子隧道效应等许多宏观材料所不具有的特殊的性质。
1、表面效应
纳米银粉是表面效应是指由大颗粒变成超细粉后,表面积增大,表面原子数目增多造成的效应,纳料银粉的表面与块状银粉是十分不同的。
2、体积效应
纳米银粉的体积效应是指体积缩小,粒子内的原子数目减少而而造成的效应。随着纳米银粉颗粒中原子数的减少能带中的能级间隔将加大,一些电、磁、热等能将发生异常。
人们可以直观觉察到,纳米银粉呈黑色而不是呈大颗粒银的银白色,并且粒径越小颜色越深。这就是由于随着银颗粒的减小,质子振动和能级不连续等到特点,不的吸收、发射和散射发生重大变化所造成的。
3、量子尺寸效应
随着颗粒减小,在低温条件下,纳米银粉能够呈现出量子尺寸效应,从能带理论出发,块状金属传导电子的能谱是准连续的。
然而,当颗粒尺寸减小时,连续的能带将分裂成不连续的能级。当分立能级之间产间距大于热能、磁能、静电能、光子能量、超导态的凝聚能时,会产生异于宏观物体的效应。
称之为量子尺寸效应。目前量子尺寸效就已被磁测量、核磁共振、电子自旋共振、光谱线位移等所证实。
4、宏观量子隧道效应
电子具有粒子性又具有波动性,具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观物理量,如纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观的势垒而产生变化,这被称为纳米粒子的宏观量子效应。
是物理杀菌,纳米铜和纳米银都是通过自身进入菌体产生反应后杀死细菌,不同的是纳米铜是一次杀菌,而纳米银则是循环杀菌。
可以长时间的循环杀菌,同时纳米铜对人体有害,而纳米银则对人体无害,现在国际上大部分关于杀菌材料的研究都是纳米银的。
扩展资料
纳米银溶液的用途:
生活用品:可用于各种纺织品、纸制品的表面喷涂,香皂、面膜及各类擦洗用品。
化工建材:纳米银可以添加到水性涂料、油漆、固体液体石蜡、油墨、各种有机(无机)溶剂等。
医疗卫生:医用橡胶管,医用纱布,妇女外用抗菌药品及保健品。
陶瓷制品:可生产纳米银抗菌餐具,卫生洁具等。◎塑料制品:纳米银可添加到PE、PP、PC、PET、ABS等各种塑料制品中实现抗菌功能。
参考资料来源:百度百科-纳米银溶液
本文关键词:纳米银粉怎么做水溶液,纳米银和微米银物理性能有何区别,纳米银粉与微米银粉的区别在哪,纳米银和微米银的区别,纳米银粉与微米银粉的区别。这就是关于《纳米银粉与微米银粉的区别,纳米银粉与微米银粉的区别在哪(金属粉末行业深度报告)》的所有内容,希望对您能有所帮助!更多的知识请继续关注《犇涌向乾》百科知识网站:http://www.029ztxx.com!
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请发送邮件至 举报,一经查实,本站将立刻删除。