第一数学归纳法,数学归纳法的标准格式(希尔伯特的公理体系——第一部分)
关于【第一数学归纳法】,数学归纳法的标准格式,今天犇犇小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
1、初等几何笔记(一):希尔伯特的公理体系——第一部分
本文作者: 宋宁,山东威海人,山东理工大学数学系教师,网名 蒜泥学数学。
第一章 破晓:在欧几里得之前
天不生仲尼,万古如长夜!——【宋】朱熹
1.1 不要迷信哥,哥只是传说
大约在文明开始出现的时代,出于生产生活的需要,四大河谷文明(也就是古埃及、古巴比伦、古印度和古中国)陆续开始孕育出最早的数学.此时的希腊还是一片蛮荒的山地和小岛.后世的历史学家称古希腊的这个阶段为“黑暗时代”,这实在是颇为传神:这里没有文明,而且土地非常贫瘠,农业生产远远落后于南方的埃及和东边的巴比伦.为了生计,很多希腊人渡海来到埃及和巴比伦.有人做起买卖,有人成了雇佣兵.但无论从事什么职业,希腊打工仔都不可避免地注意到:文明世界的城市里有着雄伟壮丽的建筑,文明世界的乡村中有着测量完善的土地.当他们询问文明世界的人们:这些建筑是怎么设计出来的?这些土地是怎么测量出来的?他们得到的回答是:几何.
在雅典卫城的帕特农神殿
更准确地来说,希腊人在埃及和巴比伦所见到的几何是一种实验几何,或者称为经验几何,是人们通过大量的实验和观测,总结出的几何规律.这种通过大量的实验和观测总结规律的思维方法,通常称为归纳法.请大家注意,这里的“归纳法”与我们数学上所说的“数学归纳法”不同.这里所说的归纳法,更准确地说,是“不完全归纳”.不完全归纳有两个重要的缺陷:
- 观测有可能不那么精确;
- 即使观测足够精确,对于有无数个实例的问题来说,观测到的实例永远 只是一小部分.
尽管(不完全)归纳法有这样的缺陷,但当时的人们能够通过(不完全)归纳发现很多数学理论,这已经是相当难得的了.
慢慢地,古希腊人终于建立起了自己的文明,古希腊的历史也进入了“古风时代”.另一方面,前来埃及和巴比伦学习数学的人也日益增多.在不知学习了多少实验几何学之后,爱辩论、爱较真的希腊人终于发现了实验几何学的这两个缺陷,尽管我们并不确定希腊人是在什么时候以什么方式发现的.我们可以脑洞大开地想象,也许故事就是在这样一次辩论当中发生的:
【故事一】一天,古希腊人老王兴冲冲地把老李叫到他家(请原谅我杜撰的两个名字),开心地说:“老李老李,我做了一件伟大得不得了的事情!我精确无比地绘制了一百种不同的三角形,然后对它们进行了精确无比的测量, 你猜我发现了什么?我发现所有三角形的内角和都是 180◦!你看我家院子的地上,全是我画的图.”于是老李来到庭院,在仔细看过一百个三角形后,若有所思地说:“ 可是无论你检查了多少个三角形,我总可以再画一个你没检查过的三角形吧!你的结论只是对你检查过的三角形成立,你怎么能保证我所画的这个新的三角形满足你的结论呢?”这番话让老王哑口无言,他陷入了沉思中……
也许这样的戏码不断在古希腊上演,人们终于意识到实验几何还真是不靠谱.也许【故事一】中的老王经过几番深思熟虑之后,终于想到了说服老李的方法,可能当时的情境是这样的:
【故事二】在经历了与老李的那次辩论后,老王认真地思考了一个月,这一天,他亲自来到老李家,他决心一定要说服老李.他说:“老李,你承认不承认下面三个事情:
• 过直线外一点有且仅有一条直线与已知直线平行;
• 一条直线交一对平行线,所成的同位角相等;
• 一条直线交一对平行线,所成的内错角相等.”
老李想了一下,似乎这三件事情都是难以撼动的真理,于是点了点头.老王接着说,既然你承认这三个事情,那么剩下的事情就好办了.你看,考虑一个三角形ABC.延长 BC 到某点 D,然后过点 C 作 CE ∥ AB(如图1.1).那么 ∠DCE = ∠B并且 ∠ECA = ∠A,所以 ∠A + ∠B + ∠C = ∠ECA + ∠DCE + ∠C = 180◦.只要你承认一开始我所说的三件事,就不等不承认我的结论,因为我的每一步推理都是有逻辑的.”老李发现确实是这样的,只要承认一开始的三个事情,那么内角和是 180◦ 正是它们的推论.而要想推翻这个结论,只有否定一开始那三个事情.老李点点头,暗自想:嗯,我也要这么干……
图 1.1: 老王的证明
我们脑补的故事也许真的发生过.按照古希腊人后来的说法,可能在公元前五世纪前后(实际时间应该大大晚于此时),有一些古希腊数学家针对实验几何的弊端,提出这样一种探究问题的模式:
对于所要论证的命题,
• 先确定几个“不证自明”的设定,或已知正确的命题;
• 再使用这些设定和正确的命题,通过逻辑推理,论证所研究的命题.
那么,在逻辑推理过程正确的前提下,你只要承认了最初的几个设定,那么你就不得不承认这个命题是正确的.于是,实验几何过渡到了推理几何,前述推理过程被称为数学证明.
这种以少数几个设定为论证的出发点,通过逻辑推理论证命题的思维方法,与之前提到的(不完全)归纳法是截然不同的,我们一般称之为演绎法.其实,演绎与(不完全)归纳,各有所长,不可偏废.没有(不完全)归纳,演绎就失去了进攻的目标;没有演绎,归纳不过是合理的猜度.所以,在数学学习和研究中,往往是以归纳寻靶,以演绎论真.当然,我们书写出的数学证明必须是演绎的,否则无从求真.
泰勒斯画像
按照某些古希腊人的说法,第一个进行数学证明的人是泰勒斯.他是一个生活在传说中的人,我们对于他知之甚少.实际上,很多关于他的故事并不可信,所以我们不可能知道他写过什么样的数学证明.而紧随其后的就是大名鼎鼎的毕达哥拉斯.毕达哥拉斯更是一个奇人.他创立了一个秘密宗教,这个秘密宗教几乎不与外界接触,但是后来教团解体,教团成员四散古希腊各地,我们今天才能对这个秘密宗教了解一二.这个宗教最令人难以置信的是,它并不崇拜任何神灵,他们所顶礼膜拜的竟然是自然数.我们不妨就称它为“Number教”吧! Number 教所信奉的第一教义就是:万物皆数!这个学派相信这个世界的一切都由数决定,并可以由数解释.据说我们故事二中的证明就来自他们.但是究竟哪些成果应该归功于教主毕达哥拉斯,哪些成果其实是他的徒子徒孙的,我们不得而知.毕达哥拉斯的弟子们和再传弟子们总是将很多成果归功于毕达哥拉斯,但我们并不知道是否真的是这样.
毕达哥拉斯雕像
但无论怎样,在现在的西方世界,他们把勾股定理的证明归功于毕达哥拉斯,并称之为毕达哥斯拉定理.即使这个定理真的是毕达哥拉斯证明的,我们现在也无从知晓他的证明了,我们只能推测:他很可能使用了相似三角形.因为有明显的证据表明:毕达哥拉斯学派是懂得相似多边形的.因为 Number 教的信仰中, 有一个无法割舍的东西:黄金分割.这从 Number 教的标志就可见一斑,它的标志是一个正五边形内接一个正五角星(如图1.2),这个图案里就蕴含着黄金分割.
图 1.2: 毕达哥拉斯学派的标志
在毕达哥拉斯学派正在野蛮生长的时候,古希腊世界却在酝酿一场革命:雅典的平民推翻了暴君的统治,随后雅典逐步开始建立奴隶制民主政体,古希腊的历史进入了“古典时代”,随后这场风暴几乎席卷了古希腊世界各地.偏偏这个时候,毕达哥拉斯学派卷入政治事件中,于是 Number 教的教团不得不解体,毕达哥拉斯也在不久去世,他的门徒们四散古希腊各地.但 Number 教的末日却意外地推动了古希腊数学的发展.伴着毕达哥拉斯门徒的步伐,原来隐秘的推理几何也随之在希腊各地发展起来,数学证明这把大火也随之在古希腊世界熊熊燃烧起来.
当然,现代数学史家对泰勒斯和毕达哥拉斯是否已经开始演绎推理是持保留看法的.因为泰勒斯和毕达哥拉斯的故事大部分都来自于柏拉图学园学者的著述.而柏拉图学园兴起的时代要晚于毕达哥拉斯的时代,而且柏拉图学园又明显受到毕达哥拉斯学派的重大影响,所以那些著述也许只是传说.
柏拉图在雅典雕像
但无论如何,毕达哥拉斯学派晚期的成员肯定是懂得推理证明的,他们很多人同时也是柏拉图学园的早期成员.那么,“柏拉图学园”又是怎么回事呢?它是一所学术机构,位于雅典城外西北角的 Akademy,你可以把它类比于现在的大学,其创始人是著名哲学家柏拉图,学园的门口挂着一块牌子,赫然写着:“不懂几何者不得入内!”
2、第一数学归纳法:数学归纳法的标准格式
数学归纳法的标准格式
如果说一个关于自然数n的命题,当n=1时成立(这一点我们可以代入检验即可),我们就可以假设n=k(k>=1)时命题也成立,为什么可以做出这步假设呢?因为我们在前面已经证明了n=1时命题成立。在进一步,如果能证明n=k+1时命题也成立的话(这一步通常使用第二步的假设证明的),由n=1命题成立,可推知n=2命题成立,继而又可推出n=3命题成立……这样就形成了一个无穷的递推,从而命题对于n>=1的自然数都成立。
一般书写的格式为:1:n=1时,……,命题成立。
2:假设n=k(k>=1)时命题成立,即:……3:n=k+1时,……,所以n=k+1时命题成立。由1,2,3知n>=1时命题成立。
数学归纳法的格式可以这样写吗?急,在线等
格式:(1)证明当n取第一个值时命题成立。对于一般数列取值为0或1,但也有特殊情况;也就是你写的a1时成立。
(2)假设当n=k(k≥1,k为自然数)时命题成立,也就是你写的第二步。
(3)证明当n=k+1时命题也成立。综合(1)(2)(3),对一切自然数n(n≥1),命题都成立。
第一第二数学归纳法格式
第一数学归纳法可以概括为以下三步:(1)归纳奠基:证明n=1时命题成立;(2)归纳假设:假设n=k时命题成立;(3)归纳递推:由归纳假设推出n=k+1时命题也成立.第二数学归纳法原理是设有一个与自然数n有关的命题,如果:(1)当n=1时,命题成立;(2)假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立。那么,命题对于一切自然数n来说都成立。
本文关键词:数学归纳法的标准格式怎么写,数学归纳法的几种形式,数学归纳法的概念,数学归纳法的用法,数学归纳法的过程。这就是关于《第一数学归纳法,数学归纳法的标准格式(希尔伯特的公理体系——第一部分)》的所有内容,希望对您能有所帮助!更多的知识请继续关注《犇涌向乾》百科知识网站:http://www.029ztxx.com!
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请发送邮件至 举报,一经查实,本站将立刻删除。