当前位置: > 投稿>正文

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

03-03 互联网 未知 投稿

关于【人体最舒适的温度是多少】,人体最舒适的温度是多少度,今天犇犇小编给您分享一下,如果对您有所帮助别忘了关注本站哦。

1、「Python」零起步数学+神经网络入门

摘要:手把手教你用(Python)零起步数学+神经网络入门!

在这篇文章中,我们将在Python中从头开始了解用于构建具有各种层神经网络(完全连接,卷积等)的小型库中的机器学习和代码。最终,我们将能够写出如下内容:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

假设你对神经网络已经有一定的了解,这篇文章的目的不是解释为什么构建这些模型,而是要说明如何正确实现

逐层

我们这里需要牢记整个框架:

1. 将数据输入神经网络

2. 在得出输出之前,数据从一层流向下一层

3. 一旦得到输出,就可以计算出一个标量误差

4. 最后,可以通过相对于参数本身减去误差的导数来调整给定参数(权重或偏差)。

5. 遍历整个过程。

最重要的一步是第四步。 我们希望能够拥有任意数量的层,以及任何类型的层。 但是如果修改/添加/删除网络中的一个层,网络的输出将会改变,误差也将改变,误差相对于参数的导数也将改变。无论网络架构如何、激活函数如何、损失如何,都必须要能够计算导数。

为了实现这一点,我们必须分别实现每一层

每个层应该实现什么

我们可能构建的每一层(完全连接,卷积,最大化,丢失等)至少有两个共同点:输入输出数据。

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

现在重要的一部分

假设给出一个层相对于其输出(∂E/∂Y)误差的导数,那么它必须能够提供相对于其输入(∂E/∂X)误差的导数

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

记住,Eæ˜¯æ ‡é‡ï¼ˆä¸€ä¸ªæ•°å­—ï¼‰ï¼ŒX和Y是矩阵。

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

我们可以使用链规则轻松计算∂E/∂X的元素:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

为什么是∂E/∂X?

对于每一层,我们需要相对于其输入的误差导数,因为它将是相对于前一层输出的误差导数。这非常重要,这是理解反向传播的关键!在这之后,我们将能够立即从头开始编写深度卷积神经网络!

花样图解

基本上,对于前向传播,我们将输入数据提供给第一层,然后每层的输出成为下一层的输入,直到到达网络的末端。

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

对于反向传播,我们只是简单使用链规则来获得需要的导数。这就是为什么每一层必须提供其输出相对于其输入的导数。

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

这可能看起来很抽象,但是当我们将其应用于特定类型的层时,它将变得非常清楚。现在是编写第一个python类的好时机。

抽象基类:Layer

所有其它层将继承的抽象类Layer会处理简单属性,这些属性是输入输出以及前向反向方法。

from abc import abstractmethod# Base classclass Layer: def __init__(self): self.input = None; self.output = None; self.input_shape = None; self.output_shape = None; # computes the output Y of a layer for a given input X @abstractmethod def forward_propagation(self, input): raise NotImplementedError # computes dE/dX for a given dE/dY (and update parameters if any) @abstractmethod def backward_propagation(self, output_error, learning_rate): raise NotImplementedError

正如你所看到的,在back_propagation函数中,有一个我没有提到的参数,它是learning_rate。 此参数应该类似于更新策略或者在Keras中调用它的优化器,为了简单起见,我们只是通过学习率并使用梯度下降更新我们的参数。

全连接层

现在先定义并实现第一种类型的网络层:全连接层或FC层。FC层是最基本的网络层,因为每个输入神经元都连接到每个输出神经元。

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

前向传播

每个输出神经元的值由下式计算:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

使用矩阵,可以使用点积来计算每一个输出神经元的值:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

当完成前向传播之后,现在开始做反向传播。

反向传播

正如我们所说,假设我们有一个矩阵,其中包含与该层输出相关的误差导数(∂E/∂Y)。 我们需要 :

1.关于参数的误差导数(∂E/∂W,∂E/∂B)

2.关于输入的误差导数(∂E/∂X)

首先计算∂E/∂W,该矩阵应与W本身的大小相同:对于ixj,其中i是输入神经元的数量,j是输出神经元的数量。每个权重都需要一个梯度

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

使用前面提到的链规则,可以写出:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

那么:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

这就是更新权重的第一个公式!现在开始计算∂E/∂B:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

同样,∂E/∂B需要与B本身具有相同的大小,每个偏差一个梯度。 我们可以再次使用链规则:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

得出结论:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

现在已经得到∂E/∂W∂E/∂B,我们留下∂E/∂X这是非常重要的,因为它将“作用”为之前层的∂E/∂Y。

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

再次使用链规则:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

最后,我们可以写出整个矩阵:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

我们已经得到FC层所需的三个公式!

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

编码全连接层

现在我们可以用Python编写实现:

from layer import Layerimport numpy as np# inherit from base class Layerclass FCLayer(Layer): # input_shape = (1,i) i the number of input neurons # output_shape = (1,j) j the number of output neurons def __init__(self, input_shape, output_shape): self.input_shape = input_shape; self.output_shape = output_shape; self.weights = np.random.rand(input_shape[1], output_shape[1]) - 0.5; self.bias = np.random.rand(1, output_shape[1]) - 0.5; # returns output for a given input def forward_propagation(self, input): self.input = input; self.output = np.dot(self.input, self.weights) + self.bias; return self.output; # computes dE/dW, dE/dB for a given output_error=dE/dY. Returns input_error=dE/dX. def backward_propagation(self, output_error, learning_rate): input_error = np.dot(output_error, self.weights.T); dWeights = np.dot(self.input.T, output_error); # dBias = output_error # update parameters self.weights -= learning_rate * dWeights; self.bias -= learning_rate * output_error; return input_error;

激活层

到目前为止所做的计算都完全是线性的。用这种模型学习是没有希望的,需要通过将非线性函数应用于某些层的输出来为模型添加非线性。

现在我们需要为这种新类型的层(激活层)重做整个过程!

不用担心,因为此时没有可学习的参数,过程会快点,只需要计算∂E/∂X。

我们将f和f'分别称为激活函数及其导数。

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

前向传播

正如将看到的,它非常简单。对于给定的输入X,输出是关于每个X元素的激活函数,这意味着输入输出具有相同的大小

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

反向传播

给出∂E/∂Y,需要计算∂E/∂X

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

注意,这里我们使用两个矩阵之间的每个元素乘法(而在上面的公式中,它是一个点积)

编码实现激活层

激活层的代码非常简单:

from layer import Layer# inherit from base class Layerclass ActivationLayer(Layer): # input_shape = (1,i) i the number of input neurons def __init__(self, input_shape, activation, activation_prime): self.input_shape = input_shape; self.output_shape = input_shape; self.activation = activation; self.activation_prime = activation_prime; # returns the activated input def forward_propagation(self, input): self.input = input; self.output = self.activation(self.input); return self.output; # Returns input_error=dE/dX for a given output_error=dE/dY. # learning_rate is not used because there is no "learnable" parameters. def backward_propagation(self, output_error, learning_rate): return self.activation_prime(self.input) * output_error;

可以在单独的文件中编写一些激活函数以及它们的导数,稍后将使用它们构建ActivationLayer:

import numpy as np# activation function and its derivativedef tanh(x): return np.tanh(x);def tanh_prime(x): return 1-np.tanh(x)**2;

损失函数

到目前为止,对于给定的层,我们假设给出了∂E/∂Y(由下一层给出)。但是最后一层怎么得到∂E/∂Y?我们通过简单地手动给出最后一层的∂E/∂Y,它取决于我们如何定义误差。

网络的误差由自己定义,该误差衡量网络对给定输入数据的好坏程度。有许多方法可以定义误差,其中一种最常见的叫做MSE - Mean Squared Error:

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

其中y *和y分别表示期望的输出实际输出。你可以将损失视为最后一层,它将所有输出神经元吸收并将它们压成一个神经元。与其他每一层一样,需要定义∂E/∂Y。除了现在,我们终于得到E!

人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)

以下是两个python函数,可以将它们放在一个单独的文件中,将在构建网络时使用。

import numpy as np# loss function and its derivativedef mse(y_true, y_pred): return np.mean(np.power(y_true-y_pred, 2));def mse_prime(y_true, y_pred): return 2*(y_pred-y_true)/y_true.size;

网络类

到现在几乎完成了!我们将构建一个Network类来创建神经网络,非常容易,类似于第一张图片!

我注释了代码的每一部分,如果你掌握了前面的步骤,那么理解它应该不会太复杂。

from layer import Layerclass Network: def __init__(self): self.layers = []; self.loss = None; self.loss_prime = None; # add layer to network def add(self, layer): self.layers.append(layer); # set loss to use def use(self, loss, loss_prime): self.loss = loss; self.loss_prime = loss_prime; # predict output for given input def predict(self, input): # sample dimension first samples = len(input); result = []; # run network over all samples for i in range(samples): # forward propagation output = input[i]; for layer in self.layers: # output of layer l is input of layer l+1 output = layer.forward_propagation(output); result.append(output); return result; # train the network def fit(self, x_train, y_train, epochs, learning_rate): # sample dimension first samples = len(x_train); # training loop for i in range(epochs): err = 0; for j in range(samples): # forward propagation output = x_train[j]; for layer in self.layers: output = layer.forward_propagation(output); # compute loss (for display purpose only) err += self.loss(y_train[j], output); # backward propagation error = self.loss_prime(y_train[j], output); # loop from end of network to beginning for layer in reversed(self.layers): # backpropagate dE error = layer.backward_propagation(error, learning_rate); # calculate average error on all samples err /= samples; print('epoch %d/%d error=%f' % (i+1,epochs,err));

构建一个神经网络

最后!我们可以使用我们的类来创建一个包含任意数量层的神经网络!为了简单起见,我将向你展示如何构建......一个XOR。

from network import Networkfrom fc_layer import FCLayerfrom activation_layer import ActivationLayerfrom losses import *from activations import *import numpy as np# training datax_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]]);y_train = np.array([[[0]], [[1]], [[1]], [[0]]]);# networknet = Network();net.add(FCLayer((1,2), (1,3)));net.add(ActivationLayer((1,3), tanh, tanh_prime));net.add(FCLayer((1,3), (1,1)));net.add(ActivationLayer((1,1), tanh, tanh_prime));# trainnet.use(mse, mse_prime);net.fit(x_train, y_train, epochs=1000, learning_rate=0.1);# testout = net.predict(x_train);print(out);

同样,我认为不需要强调很多事情,只需要仔细训练数据,应该能够先获得样本维度。例如,对于xor问题,样式应为(4,1,2)。

结果

$ python xor.py epoch 1/1000 error=0.322980epoch 2/1000 error=0.311174epoch 3/1000 error=0.307195...epoch 998/1000 error=0.000243epoch 999/1000 error=0.000242epoch 1000/1000 error=0.000242[array([[ 0.00077435]]), array([[ 0.97760742]]), array([[ 0.97847793]]), array([[-0.00131305]])]

卷积层

这篇文章开始很长,所以我不会描述实现卷积层的所有步骤。但是,这是我做的一个实现:

from layer import Layerfrom scipy import signalimport numpy as np# inherit from base class Layer# This convolutional layer is always with stride 1class ConvLayer(Layer): # input_shape = (i,j,d) # kernel_shape = (m,n) # layer_depth = output depth def __init__(self, input_shape, kernel_shape, layer_depth): self.input_shape = input_shape; self.input_depth = input_shape[2]; self.kernel_shape = kernel_shape; self.layer_depth = layer_depth; self.output_shape = (input_shape[0]-kernel_shape[0]+1, input_shape[1]-kernel_shape[1]+1, layer_depth); self.weights = np.random.rand(kernel_shape[0], kernel_shape[1], self.input_depth, layer_depth) - 0.5; self.bias = np.random.rand(layer_depth) - 0.5; # returns output for a given input def forward_propagation(self, input): self.input = input; self.output = np.zeros(self.output_shape); for k in range(self.layer_depth): for d in range(self.input_depth): self.output[:,:,k] += signal.correlate2d(self.input[:,:,d], self.weights[:,:,d,k], 'valid') + self.bias[k]; return self.output; # computes dE/dW, dE/dB for a given output_error=dE/dY. Returns input_error=dE/dX. def backward_propagation(self, output_error, learning_rate): in_error = np.zeros(self.input_shape); dWeights = np.zeros((self.kernel_shape[0], self.kernel_shape[1], self.input_depth, self.layer_depth)); dBias = np.zeros(self.layer_depth); for k in range(self.layer_depth): for d in range(self.input_depth): in_error[:,:,d] += signal.convolve2d(output_error[:,:,k], self.weights[:,:,d,k], 'full'); dWeights[:,:,d,k] = signal.correlate2d(self.input[:,:,d], output_error[:,:,k], 'valid'); dBias[k] = self.layer_depth * np.sum(output_error[:,:,k]); self.weights -= learning_rate*dWeights; self.bias -= learning_rate*dBias; return in_error;

它背后的数学实际上并不复杂!这是一篇很好的文章,你可以找到∂E/∂W,∂E/∂B和∂E/∂X的解释和计算。

如果你想验证你的理解是否正确,请尝试自己实现一些网络层,如MaxPooling,Flatten或Dropout

GitHub库

你可以在GitHub库中找到用于该文章的完整代码。

本文由阿里云云栖社区组织翻译。

文章原标题《math-neural-network-from-scratch-in-python》

作者:Omar Aflak 译者:虎说八道,审校:袁虎。

2、人体最舒适的温度是多少度

人体最舒适的温度是多少度?

人体最舒适的温度是: 18 ~ 23度,湿度45 ~ 65% RH。根据国内外的实验,夏季,人们感到最舒适的气温是19—24℃,冬季是17—22℃。

当环境温度超过舒适温度的上限时,人们便感到热,若超过 37℃时就感到酷热,一般人们能够忍受的温度上限是52℃。相反,当环境温度低于舒适温度下限时,人就感到凉、冷;若低于0℃,就感到严寒。对于一般从事室外活动衣着合适的人,能够忍受的温度下限约为零下34℃。感觉温度还与风速和湿度有关 以上只是从温度的高低谈论冷、热,这还不全面。

其实,所谓冷、热,是人们的一种感觉,它与实际气温不完全是一回事,感觉温度除与气温有关外,还与风速和湿度等有关。例如冬季南方的阴雨天,人们感到透心的冷;而在北方刮大风时,就感到刺骨的寒。在夏季台风或暴雨到来之前,由于气温高于体温,气温对人体起加热的作用,人只能靠出汗耗热来维持体温平衡,如果这时空气湿度大,汗又不易挥发,人体就会感到闷热异常。

如果这时清风徐来,加快了人体热量的散发,人体马上就感到凉快。

体感温度多少会觉得热 温度多少会觉得热


1.通常,温度27度以上就会感到热了,体感温度指人体所感受到的冷暖程度,转换成同等温度,会受到气温、风速与相对湿度的综合影响。
2.如果我们的环境温度达到了26度左右,体感就比较舒适,不冷不热。

人的体感舒适温度是多少?

居室内最适宜的温度冬季16-18摄氏度,夏季24-26摄氏度。如果温度设置过低,人体代谢功能则会下降,脉搏减慢,皮下血管收缩,而且开启地暖需要关闭门窗,空气无法流通,对老人、小孩、孕妇的影响特很大。

当温度低于12℃时,80%坐着的人会感到冷,20%活动着的人会感到冷,所以卫生学将12℃作为建筑热环境的下限。扩展资料:体温并不是固定不变的,可随性别、年龄、昼夜、运动和情绪的变化等因素而有所波动,但这种改变经常在正常范围内。女性较男性稍高,女性在月经前期和妊娠早期轻度升高,排卵期较低,这种波动主要与孕激素分泌周期有关, 女性的体内脂肪较男性为高这也应该是一个原因。新生儿体温易受外界温度的影响而发生变化,因为新生儿中枢神经系统发育尚未完善,皮肤汗腺发育又不完全,从而体温调节功能较差,容易波动。

本文关键词:人体最舒适的温度是多少度呢,人体最舒适的温度是什么,人体最舒适体温是多少度,人体最舒适温度19/23,人体最舒适的环境温度是多少度。这就是关于《人体最舒适的温度是多少,人体最舒适的温度是多少度(零起步数学+神经网络入门)》的所有内容,希望对您能有所帮助!更多的知识请继续关注《犇涌向乾》百科知识网站:http://www.029ztxx.com!

版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请发送邮件至 举报,一经查实,本站将立刻删除。

猜你喜欢