曝气头的曝气类型,曝气头类型参数(曝气器性能对比和趋势分析)
关于【曝气头的曝气类型】,曝气头类型参数,今天乾乾小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
- 内容导航:
- 1、曝气器性能对比和趋势分析
- 2、曝气头的曝气类型
1、曝气器性能对比和趋势分析
1、目前实际应用较多的曝气器类型
有:微孔(盘式和管式)、射流、旋流(单喷嘴和双喷嘴)、散流(旋混)、表曝。
微孔曝气器,原理是挤压空气,从橡胶膜片的微孔中逸出,形成微小气泡扩散到水中。氧利用率在6米清水中可以达到30%以上。但易堵塞破损,寿命较短。微孔曝气器在使用一定年限后会因为结垢堵塞造成风压和能耗上升,破损后氧利用率会骤降,需要及时进行更换。
射流曝气器,原理是循环水卷吸空气,在腔体内混合后,沿喷嘴方向射出。是较早应用于工业废水的一种曝气工艺,具备服务面积大,不易堵塞等优势。在6米清水中的氧利用率大约15%-21%。因为需要额外配备循环水泵,能耗较大。在含钙废水中,喷嘴容易结垢堵塞。
旋流曝气器,原理是气流高速喷射,在筒体内与污水混合后被蘑菇头切割,形成微小气泡,同时形成负压卷吸池底污泥。旋流是最近几年兴起的一种新型曝气工艺,6米清水氧利用率大约18%-25%。因为可以不停产安装,不易堵塞,寿命达十年以上,能耗适中,近年在工业废水领域已开始大面积应用。
散流曝气,倒伞形状,氧利用率大约8%-12%。原理类似旋流,气流撞向锯齿进行切割,但因为气流分散,冲击力弱,切割力度弱,气泡较大,氧利用率较低,能耗高又无搅拌作用,使用的越来越少。
表曝,由于叶轮的离心抛射和提升作用,水不断呈水幕状被抛向水面,从而带进空气;适用于水浅的氧化沟池型,水深时充氧效果不佳,随着土地紧张,水深增加,新建项目使用表曝的越来越少。
2、列表比较三种常见曝气形式
曝气设备比较 | ||||
序号 | 比较项目 | 微孔 | 旋流曝气器 | 射流曝气器 |
1 | 性能特点 | 氧利用率较高。易堵塞破损,易老化。 | 氧利用率稳定不变,曝气搅拌二合一。寿命久。 | 氧利用率变化较小,曝气搅拌二合一。 |
2 | 设备材质 | 塑料、橡胶、陶瓷 | ABS、PA66、高分子材料 | 玻璃钢、不锈钢 |
3 | 氧利用率 6米清水 | 新品>30%。一年后开始衰减 | 18-25% 稳定不变 无衰减 | 15%-21% 会因结垢而衰减 |
4 | 动力效率 | 新品约7kg/kwh | 约5.8kg/kwh | 约4.2kg/kwh |
5 | 压力损失 | 4-6Kpa | 0-2Kpa | 0-2Kpa |
6 | 通气量m³/min | 0.02-0.04 | 0.4-1.2 | 1-5.5 |
7 | 服务面积㎡/个 | 0.3-0.5 | 4-12 | 10-20 |
8 | 寿命 | 3年左右 | 10年以上 | 5-8年 |
9 | 适用污水浓度 | 低浓度 | 中高浓度 | 中高浓度 |
10 | 适用水深 | 4米以上效果佳 | 最佳深度5米以上 | 最佳深度5米以上 |
11 | 搅拌功能 | 不具备 | 具备。无盲区。 | 具备,但有盲区。 |
12 | 结垢情况 | 容易结垢 | 不易结垢 | 容易结垢 |
13 | 污泥沉积情况 | 严重 | 无 | 中等 |
14 | 适用环境 | 市政污水 | 工业污水、园区污水 | 工业污水 |
15 | 曝气盲区 | 少 | 少 | 大 |
16 | 溶氧分布 | 均匀 | 均匀 | 欠均匀 |
17 | 不停产安装 | 基于安装形式 | 能 | 不能 |
18 | 安装便捷性 | 复杂 | 简单 | 复杂 |
19 | 检修工作量 | 大 | 无 | 中 |
20 | 检修费用 | 高 | 无 | 高 |
21 | 配套设备 | 鼓风机 | 鼓风机 | 鼓风机、循环水泵 |
22 | 初期投资 | 最低 | 中 | 高 |
23 | 运行能耗 | 低 | 低 | 高 |
24 | 经济特性 | 运行能耗较低。寿命短,更换频繁。 | 运行能耗低,寿命久,免检修。 | 运行能耗高,检修费用高。 |
25 | 10年综合成本 | 1.2基准单位 | 1个基准单位 | 1.3基准单位 |
通过以上比较,三种曝气工艺各自的优缺点和适用场景,一目了然。旋流的不停产安装是一大优势,既避免了停产损失,也避免了清淤费用,以及更换带来的安全事故风险。寿命十年以上,免检修,还能够大大降低污水站的人工成本。
能耗方面。旋流与微孔氧利用率虽然差异较大,但微孔氧利用率不断衰减,而旋流稳定不变,同时因旋流的α值(从清水到污水时,曝气器氧利用率的下降程度)较小,两者长期能耗基本持平。通过桐乡申和污水厂的智慧水务系统验证,进口微孔新品第一年的能耗比双喷嘴旋流低约15%,从第二年开始两者持平。微孔在结垢堵塞破损后,如未及时更换氧利用率会骤降,所以部分改造案例中还出现了旋流比微孔节能的现象。
旋流的风阻低,风压稳定无变化,利于风机的平稳运行,尤其是风机为磁浮或空浮时。如某园区污水厂,水深7米,使用微孔4年后,风压上升到90kpa,能耗上升严重,出风量却下降严重,新购风机时不得已选型为100Kpa,而使用旋流,风压可长期稳定维持在80kpa以内。
旋流与射流相比,所需的风机风量相差不大,通常射流泵能耗即是旋流比射流所节省的能耗。
随着土地紧张,在不扩建的情况下,要提升污水的处理量,往往需要将污泥浓度和水深提的更高,对曝气器不堵塞、风阻稳定的要求趋高,旋流的使用会愈加成为趋势。下面重点讲述一下旋流曝气。
1、旋流曝气器的氧利用率
旋流曝气技术,自日本引进,目前旋流产品有原装进口的,也有购买日本专利后在国内进行生产研发的,更多则是仿制,质量参差不齐。
不同品牌的旋流曝气器,氧利用率差别较大。以氧利用率分别是18%和22%进行比较,看似只差4%,实际需风量相差接近20%,意味着能耗相差近20%(正确的计算公式应是18/22=80%)。在风机风量处于临界值时,这个差异还会直接导致溶氧是否达标。购买旋流曝气器时可让厂家提供国家给排水设备检测中心的检测报告,以证明产品的氧利用率。
双喷嘴旋流曝气器的氧利用率,通常比单喷嘴高出15%左右。单双喷嘴旋流曝气器氧利用率差异较大,原因主要是气泡被切割次数和在水中停留的时间差异较大。不同品牌的单喷嘴旋流曝气器,氧利用率也存在差异的原因主要是喷嘴是否作变径处理以及切割头是否严格按照流体力学进行排布。
2、旋流曝气器的材质
旋流曝气器常见材质是:ABS、PA66、高分子复合材料。在性能上,PA66优于ABS,纯PA66要优于“PA66+玻纤”。部分厂家制作时为便于注塑成型会在PA66中添加玻璃纤维,这样硬度虽然提升但会增大表面摩擦系数,导致容易结垢。高分子材料具有一定的研发门槛,原料价格较贵,但具备其它材料无可比拟的自润滑、抗结垢、耐磨、耐冲击、耐酸洗、不易吸水等性能特点,近年以上海泰誉为首的一些厂商已经开始将高分子材料应用于旋流曝气器中。
3、高浓废水和含钙废水曝气器选型注意事项
高浓废水和含钙废水,使用单喷嘴旋流曝气器,久了也会出现结垢堵塞现象,主要是因为单喷嘴筒体中的交叉片结构以及材质容易结垢。此类废水,适合使用高分子材料制作的双喷嘴旋流曝气器,一是高分子材料具备自润滑抗结垢的性能,二是双喷嘴旋流曝气器内部无交叉片阻碍,口径大不易堵塞。三是,双喷嘴旋流的锥体形成文丘里效应,对污泥卷吸力更强,更能阻止污泥沉积。
4、旋流曝气器安装注意事项
不恰当的安装方式,会严重影响旋流使用寿命。侧面进气的曝气器,本体与竖管之间须使用两根直杆进行固定,确保进风管不会单独受力。最好选用进风管是一次成型且加粗加厚的曝气器,防止在长期高频振动下螺丝松散或进风管断裂。曝气器与管路通常在池外提前焊接好,在人工搬运或使用吊车起吊过程中,注意绝对不能让曝气器一端触地受力。较深的水池,竖管管材须管粗壁厚,以防止扰度过大。竖管和横管连接处,可以加斜撑固定以防止断裂。
2、曝气头的曝气类型
曝气头的曝气类型
曝气类型大体分为两类:一类是鼓风曝气,一类是机械曝气。鼓风曝气是采用曝气鼓风机,曝气器;扩散板或扩散管在水中引入气泡的曝气方式。一般乙烯厂的污水处理多采用这种方式。机械曝气是指利用叶轮等器械引入气泡的曝气方式。
所有的曝气设备,都应该满足下列3种功能:
① 产生并维持有效的气-水接触,并且在生物氧化作用不断消耗氧气的情况下保持水中一定的溶解氧浓度;
② 在曝气区内产生足够的混合作用和水的循环流动;
③ 维持液体的足够速度,以使水中的生物固体处于悬浮状态。
曝气头越深水中溶氧量越大吗?
溶解氧量和曝气头的深浅没关系,深浅只能代表压头的大小,即越深压力越大;溶解氧DO的大小和曝气量才有关系,而曝气量取决于你选用风机的大小,一般风机固定了,一个池子在运行的过程中里曝气量一般是一定的。而如何选择合适风机的大小,这个就可以参考设计手册上的计算方法,一般都有一个固定的计算步骤,和很多因素有关,首当其冲的就是温度,比如20度和25度的池子所需溶解氧就有挺大差距,具体计算你可以参考设计手册城镇排水那本,具体第几册我有点记不太清了。里面很详细,纯手工输入,累死我了
污水厂曝气池曝气头既尺寸有什么要求?
一般采用盘式扩散器(即俗称的曝气头)。
首先,要认真计算确定曝气池总的曝气气量,单位m³/h。
然后,在根据扩散器样本上标明的单个扩散器的合理通气量,一般是2~3m³/h,用总曝气量除以这个数字算出来需要的数量。
其次,再用曝气池曝气区的面积除以曝气头计算数量,确定其每个的单位服务面积,看看选型样本上的扩散器的服务面积是否吻合(一般曝气头:橡胶膜材质的是0.5㎡、陶瓷刚玉膜是0.3~0.6㎡)。注意如果曝气头布置过密则氧气利用率会有下降。
最后,根据这个计算的平均单个面积开平方计算曝气头间距。
曝气头布置应在池底,上表面一般是池底尽量贴地安装,确保曝气头上面的工作时水压能够达到4米水头以上这样氧气利用率才能满足设计要求(氧气转移率都是在上覆4米清水中测定的)。
一般都是均匀分布,特别是SBR这类技术。但是推流式曝气池AO之类的、普通曝气池之类的最好采用分段曝气,即开始曝气多,之后逐步减少,按照一定比例分布曝气头(例如50:33:17),这样符合微生物生理需要,开始曝气多利于生长降解污染物,最后曝气少,一是确实污染物少没必要浪费空气,另外如果你AO/A2O凡是有混合液末端回流都必然是从末端取水,为此你最好控制其末端的溶解氧DO的量在1mg/L以下,以减少由于混合液回流对A段的由于溶解氧造成的负面影响。此时计算曝气头时也是一样的,不过就是要认真用服务面积这个参数校核,注意设计的太密并不是好事,会影响氧气传递效果降低利用率的。曝气池长宽比是4:1以上比较好,推流式曝气池能做的更高,如果太长可以做折弯都没问题,曝气池的深度比较固定多是4.5~5米,不宜过浅否则氧气利用率下降。
选曝气头要对其膜的材质进行核实,一般生活污水都没问题,但是如果是工业废水或是用在预曝气调节池、药剂空气搅拌这类用途时,一定要认真选取材质。例如,刚玉和氨基甲酸聚合物做的膜片曝气头可以用在工业废水上的,硅晴聚合物材质的曝气头用在含油废水中做预曝气不错。
本文关键词:曝气头的曝气类型是什么,曝气头优缺点,曝气头作用,曝气头的曝气类型有哪些,曝气头类型参数。这就是关于《曝气头的曝气类型,曝气头类型参数(曝气器性能对比和趋势分析)》的所有内容,希望对您能有所帮助!更多的知识请继续关注《犇涌向乾》百科知识网站:http://www.029ztxx.com!
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请发送邮件至 举报,一经查实,本站将立刻删除。