高等数学里微积分概念及原理,微积分就是初等数学加上极限运算
关于【高等数学里微积分概念及原理】,今天涌涌小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
1、高等数学里微积分概念及原理:微积分就是初等数学加上极限运算
微积分一诞生,就在力学、天文学中大现身手,能够轻而易举地解决许多本来认为束手无策的难题。后来,微积分又在更多的领域取得了丰硕的成果。人们公认微积分是17、18世纪数学所达到的最高成就,然而它的创始人牛顿和莱布尼茨对之所作的论证却并不清楚、很不严谨。无论是牛顿的瞬和流数,还是莱布尼茨的dx和,都涉及到”无穷小量",而在他们各自的论述中都没有给出确定的、一贯的定义。
在微积分的推导和运算过程中,常常是先用无穷小量作为分母进行除法,然后又把无穷小量当作零,以消除那些包含有它的项。那么"无穷小量"究竟是零还是非零呢?如果它是零,怎么能用它去作除数呢?如果它不是零,又怎么能把包含它的那些项消除掉呢?这种逻辑上的矛盾,牛顿和莱布尼茨都意识到了。
牛顿曾用有限差值的最初比和最终比来说明流数的意义,但是当差值还未达到零时,其比值不是最终的,而当差值达到零时,它们的比就成为无穷,怎样理解这样的最终比呢?实在令人困惑。牛顿承认他对自己的方法只作出"简略的说明,而不是正确的论证。"莱布尼茨曾把无穷小量形容为一种"理想的量",但正如一些数学家所说:"与其说是一种说明,还不如说是一个谜。"
奇怪的是,微积分自身存在着明显的逻辑混乱,然而在实际应用中则是卓有成效的得力工具。这样,微积分就具有了"神秘性"。起初,"神秘性"集中表现在对于"无穷小量"这个概念的理解上,并因而受到了各种人的攻击。数学家们不能容忍这一新方法的理论本身是如此的含糊不清乃至荒谬绝伦。法国数学家洛尔称微积分为"巧妙的谬论的汇集";著名思想家伏尔泰说微积分是"精确的计算和度量某种无从想象其存在的东西的艺术"。在一片疑难和责问声中,以英国主教兼哲学家贝克莱的谴责最为强烈,他讥讽无穷小量是"逝去的量的鬼魂",说微积分包含"大量的空虚、黑暗和混乱",是"分明的诡辩"。
微积分的逻辑缺陷和人们的猛烈攻击,激厉数学家们为消除微积分的神秘性,亦即为微积分建立合理的理论基础而努力。18世纪,在这方面作出贡献的主要代表人物是达朗贝尔、欧拉和拉格朗日。可是"无穷小量"的本质尚未弄明白,无穷级数的"和"的问题又日渐突出了。在微积分里,一个典型的基本算法就是把无穷多项相加,叫做求无穷级数之和。在初等数学中,有限多项相加总有确定的和。而无穷多项相加,是加不完的,什么是无穷级数的"和"是不清楚的。在很长一段时间里,人们习惯地把有限多项相加的运算规则照搬到无穷级数中,虽然也解决过许多问题,但有时竟出现了像1/2=0这样的荒谬结果。
进入19世纪以后,随着微积分应用的更加广泛和深入,遇到的数量关系也更加复杂,很多问题,例如,对于热传导现象的研究,就已超出了早年力学那样的直观性。在这种情况下,要求有明确的概念、合乎逻辑的推理和运算法则,就显得更加重要和迫切了。事实上,微积分作为变量数学,是运用”无穷"来描画和研究运动和变化过程,并获得了成功的,却长期没有对有关"无穷"的概念给出正确的阐述,甚至导致逻辑上的混乱,微积分的神秘性正是由此而来,而这也正是微积分的理论基础所要解决的问题。
数学家们经过一百多年的艰苦探索历程,终于在前人所积累的大量成果(包括许多失败的尝试)的基础上,建立起微积分的理论基础。柯西(1789―1857)于1821年出版的《分析教程》中,开始有了极限概念的基本明确的叙述,并以极限概念为基础,对"无穷小量"、无穷级数的"和"等概念给出了比较明确的定义。例如,从极限的观点看,"无穷小量"就是极限为零的变量,在变化过程中,它可以是"非零",但它的变化趋向是"零",无限地接近于"零"。极限论正是从变化趋向上说明了"无穷小量"与"零"的内在联系,从而澄清了逻辑上的混乱,撕下了早期微积分的神秘面纱。后来,经过波尔察诺、魏尔斯特拉斯、戴德金、康托等人的卓越工作,又进一步把极限论建立在严格的实数理论基础上,并且形成了描述极限过程的ε-δ语言。
微积分理论基础的严密化,使微积分跃进和扩展为现代数学的重要领域。
“人总是要死的,但他们的业绩应该永存.”
──柯西
2、高等数学里微积分概念及原理,高等数学简单理解定积分的原理
今天是高等数学第11篇文章,我们来看看定积分的相关内容。
对于很多人来说定积分的内容其实早在高中就已经接触过了,比如在高中物理当中,我们经常使用一种叫做”微元法“的方法来解决一些物理问题。但实际上所谓的”微元法“本质上来说其实就是一种微积分计算方法。我们来看两个简单的例子。
微分与积分的例子
第一个例子是扇形的面积计算,先别急着笑,我知道这个是初中的内容。扇形的面积谁不会算,扇形的面积等于圆的面积乘上圆心角嘛。
圆的面积我们都知道 πr^2,如果是扇形的话,再加上圆心角,我们用弧度制来表示圆心角,可以直接进行计算:πrθ。
除此之外还有别的办法吗?
当然是有的,我们来看下面这张图:
在下面这张图当中,我们从扇形上切了一小块出来,做了一个直角三角形。我们令这个直角三角形无限窄,那么它的面积就可以近似于这一块小扇形的面积。
直角三角形的面积很简单,我们都会算,我们令短的直角边长度是l。那么这个小三角形的面积就等于1/2 rl。
我们如此操作,可以把这一块扇形分割成无数个这样的小三角形,最后我们把这些小三角形的面积全部加起来,就可以得到扇形的面积。由于l趋向于0,每一个小三角形和小扇形的面积差的极限都是0,所以可以近似看成它们相等。
这样一番操作之后,我们可以用无数个小三角形的面积来代替扇形的面积。对于这些小三角形而言,它们的面积都是1/2 rl。把它们进行累加,本质上也就是把这些所有的短边进行累加。那么显然,这些所有的短边累加之后的结果就是扇形的弧长。
我们假设这块扇形的弧长是L,那么整个扇形的面积还可以表示成1/2rL。
我们可以简单验证一下,一个完整的圆也可以看成是一个扇形。一个完整的圆,它的弧长,也就是周长是2πr。我们代入刚才的公式,得到的结果和圆的面积公式吻合,所以我们的计算是正确的。
在这个例子当中扇形分割成的每个小三角形是一样的,所以我们可以直接进行累加。如果我们微分之后的结果不再是固定的,是变化的,那么应该怎么办?
我们再来看另外一个例子:
比如我们要求a和b两点围成的曲线矩形的面积,我们也可以将矩形进行拆分。我们可以无限拆分成多个小的矩形的面积去替代。我们可以很容易证明,当Δx趋向于0的时候,那一块小的矩形面积和曲线矩形的面积相等。所以我们可以把它拆分成无数个这样的矩形,然后将所有的面积求和,就得到了曲线围成的面积。
对于每一块矩形而言,它们的宽都是Δx,但是它们的高都不相同。但是很容易看出来,它们的高都是区间里某一个坐标的函数值。其实我们可以写出来这些序列的值,它们分别是: a, a Δx, a 2Δx, ..., b。
为了方便书写,我们令这个序列等于 {ζ1, ζ2, ζ3 ... ζn} 所以曲线围成的面积可以写成:
定积分的定义
我们观察一下上面这个问题,其实我们知道了很多信息,比如我们知道了函数f(x),我们还知道了a和b的值,看起来已经离结果很近了。的确如此,但是在我们继续往下之前,我们必须要明确一点,我们这样的推算是有前提的。
最大的也是隐藏的前提就是我们做的划分,我们必须要保证两点,首先我们要保证当Δx趋向于0的时候,矩形高度的极限是确定的。并且这些小矩形的面积和的极限趋近于它真实的面积。
我们用数学的语言来表达,也就是说,我们无论如何选取每一个ζi,我们都要保证
是一个定值,这样我们就可以把这个式子写成定积分的形式:
这里的f(x)称作被积函数,f(x)dx称为被积表达式,x叫做积分变量,a和b分别称为积分的上限和下限。
如果f(x)在[a, b]上的定积分存在,那么就称为f(x)在区间[a, b]上可积。
什么样的函数可积呢?
这个问题要用数学的语言证明不太容易,但是如果从直观上去理解则要简单很多。通过上面的图,我们很轻松可以得到结论:连续函数一定可积,并且如果函数在[a, b]上有界并且只有有限个断点也可积。因为有限个间断点不会影响面积的计算,从这个角度入手,是否可积的判断其实还是很好理解的。
我们明白了可导的定义之后,我们再把之前连续和可导这些性质串起来,我们就可以编出高数顺口溜了:
可导一定连续,连续不一定可导。
连续一定可积,可积不一定连续。
可导一般可积,可积不一定可导。
理解并且记住这个顺口溜可是学好高数的基础,不信可以去问问考研党,这几句必然朗朗上口。如果觉得晕头转向也没关系,以后有机会会单独开一篇文章好好讲讲这几个顺口溜。
简单性质
最后,我们来看下定积分的一些简单性质。
第一个是加法性质:
这个很好证明,我们只需要将它转化成累加的形式就可以把括号里相加的内容拆开:
另一个经常用到的性质是延续性质,假设f(x)在整个区间上可积,那么我们可以得到:
不论a,b,c之间的大小关系如何,上面的式子都成立。证明方法和刚才一样,我们将积分用累加形式来表示,代入即可。
最后一个性质是保号性,假设f(x)和g(x)在区间[a, b]上可积。并且对于任意x属于[a, b]都有 f(x) <= g(x) ,那么我们可以得到:
这个证明也很简单,我们令 h(x) = g(x) - f(x) >= 0,我们对h(x)进行积分,得到的结果自然大于等于0,再结合刚才的积分的加法性质,我们就可以移项得到结果了。
除了上面提到的三个性质之外,定积分还有很多其他的一些性质。但是这些性质一则比较琐碎,另外也比较直观,值得研究的内容不太多,所以我们不过多涉入,感兴趣的同学可以自行了解。
不知道看了这么多你是不是会有一些问号呢,我们分析了这么多,那么定积分究竟应该怎么计算呢?
这个问题先不着急回答,因为如果你学过微积分的话,那么对于怎么计算积分应该还有一些印象。如果没有的话,直接给出结论并没有什么用,在数学上结论总是需要我们通过严谨的推导的,否则就是空中楼阁,即使记住了,以后也总会忘记的。所以关于定积分的计算推导过程,我们放到下一篇文章当中,敬请期待啦。
本文关键词:微积分高等数学公式,高等数学里微积分概念及原理是什么,高等数学常用微积分公式,高等数学中的微积分,高等数学微积分基本公式。这就是关于《高等数学里微积分概念及原理,微积分就是初等数学加上极限运算》的所有内容,希望对您能有所帮助!更多的知识请继续关注《犇涌向乾》百科知识网站:http://www.029ztxx.com!
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请发送邮件至 举报,一经查实,本站将立刻删除。